
AD-Ai21 886 WAFER SCALE INTEGRATION OF PARALLEL PROCESSORS(U) 1/3
PURDUE UNIV LAFAYETTE IN DEPT OF COMPUTER SCIENCES
K S HEDLUND NOV 82 CSD-TR-4i1 N8884-80-K-886

UNCLASSIFIED F/G 9/2 NLmhhhhhhhhhhiE
IIIIIIIIIIIIIE
IIIIIIIIIIIIIE
EhllhlhllhlhiE
llllllllhllllI

I lllll flllllll

*12 __ 2

168

JI251111.4 111.

MICROCOPY RESOLUTION TEST CHART

NATIONAL munt AU OF STANiDAES - 196- A

ADA121J8S6

Wafer Scale Integration of
Parallel Processors

by

Kyc Sherrick Hedlund

DTIC
ELECTE

NOV 2919W

4 DIDISTRIBUTION STATEMENT A
Approved for public zeleaQg

DisriutonUnlimited

The BLUE CHiP Project
Purdue Unfivrsity

D~epartment of Computer S(Ie((e
Matih Scienices Buildling

Wes(t IdfdCote. Ind(ian~a 1 7%7

45 82 11 29 003

Uclassif ind
5ECUflITY CLASSIFICATION OF THIS PAGE (*Wona Date EntardS__________________

REPORT DOCUMENTATION PAGE BFRE INSTRUTINS O

I. RIPORT NUMBER 1.GOVT ACCESSION NO: 3. RECIPIENT'S CATALOG NUMBER

CSD-TR-411 L1,~(~ __________

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Wafer Scale Integration of Technical, Interim
PaallProcessors 6. PERFORMING ORG. REPORT NUMBER

7. AUTI4OR(o) I. CONTRACT OR GRANT NUM0ER(s)

Kye Sherrick Hedlund N00014-80-K-0816
N0001481-K0360

9 . PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKC
Purdue UniversityARAaWRUITNJES
Department of Computer Sciences Task SRO-100K ~West Lafayette, Indiana 47907____________

IL. CONTROLLING0 OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research November, 1982
Information Systems Program 24.U69RO AE
Arlington, Virginia 22217____________

14. MONITORING AGENCY NAME 0 ADORESS(if differeut from Controinga Office) Is. SECURITY CLASS. (of this report)

Unclassified

I0. DIUkSSI ICATION DOWNGRADING -

IS. DISTRIBUTION STATEMENT (of this ReOftR)

I ISBIMTON STATEIM

IAppxovd faE publi vdeas4

Distribution t~nlimted

17. DISTRIBUTION STATEMENT (of the abstract entered io Blick it* di fferent kom Rteport)

Distribution of this report is unlimited.

I0. SUPPLEMENTARY MOTES

19. KEY WORDS (Continue on reverse side if noeoeiy and Identity by block nunber)

wafer scale integration, VLSI, price model, CHiP computer,
switch lattice, two level hierarchy, reflective switch,
high parallel computers

20. ABST RAC T (Continue on reverse side It nosoooai Mmd identify by bleck Mmbffe) '
Integrated circuit size (and hence complexity) is limited

by the fact that chips created using current design techniques
will not functiqn correctly in the presence of even a single
-oirUit-efct--) This research examines the problem of
constructing chips up to the size of the wafer (wafer scale
integration) that operate correctly despite the occurrence of
such flaws. we concentrate on a particular family of parallel

DD I F~~ 7 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified
544 0102.LF.Otd.6601

SECURITY CLASSIFICATION OF THIS PAGE (hMM Data 410141VO

Unclassified .

SECURITYV CLASIFICATION OF THIS PAGE (When Dee. Entefd)

20. (Continued).

-'processors, configurable, highly parallel (CHiP) processors.

The key problem in the implementation of wafer
scale -

integration is structuring the wafer so that only the
functional PEs are connected together. A methodology, the
two level hierarchy, that efficiently and economically solves
the structuring problem for CHiP processors is presented.
The principle elements are the use of column exclusion with
high yield building blocks that contain redundant components.
This approach limits the performance degradation due to
structuring and allows the structuring problem to be solved
with tra.table computational effort.

Since the yield of building blocks must be high for the
two level hierarchy to be a practical approach, yield
phenomena are investigated in detail. 1-A o -m---~w..-
integrated circuit manufacturing procfss is developed that
predicts circuit yield and the probability distribution of
manufacturing defects. These results are applied to the
analysis of parallel processors in which several PEs occupy a -0
single chip. In addition, they are used to design the building
blocks meeting the requirements of the column exclusion
strategy. . .,

It was skown that these building blocks can be assembled
into a wafer scale CHiP processor.| With current technology, it 4
is possible to fabricate a wafer scale system with 250 to 300,
PEs. This represents a truly large parallel machine.
Furthermore, this machine is highly robust to faults occurring
during the machine's lifetime, consumes a manageable amount of .
power and can be efficiently tested. ..

Although the techniques for implementing wafer scale
integration were developed for CHiP processors, they can be
applied to other system composed of uniform parts.

F. .

Unclassified
SECURITY CLASSIFICATION OF-MIS PA@E'Whse DOM EMoN t

. *.V ~~ "W . .W

* .. -. - .7 w

Io9o

Availability Codes

Wafer Scale Integration of
Parallel Processors

A Thesis

by

Kye Sherrick Hedlund

- This work Is part of the Blue CHIP Project. It Is supported In part by the Office of
Naval Research Contracts N00014-a0-K-0816 and N00014-81-K-0360. The latter in
Task SRO- 100.

ACKNOWLEDGMENTS

i

I would like to express my strongest thanks to my advisor, Lawrence

Snyder, for his tireless guidance and support throughout the course of this

study. Thanks are also extended to the other members of my research com-

mittee, Peter Denning, Dennis Gannon and Gerold Neudeck, for their time

and effort.

Special thanks go to my colleagues Dan Reed, David Mount and Ching

Hsiao for their listening, helpful suggestions and advice, and to Julie Han-

over who provided valuable assistance in preparing this manuscript.

Partial support for this work was provided by the Office of Naval

Research. It is greatly appreciated.

Very special thanks are due to my mother and father for their lovp and

encouragement.

Finally, to Becki. for her love and support.

9
I

- -

TABLE OF CONTENTS

* 8 Page

LIST OF TAB3LES.. v

LIST OF FIGURES I.. vii

ABSTRACT... x

CHAPTER 1 - INTRODUCTION............ 1

1. Wafer Scale Integration .. 2
2. Previous Work on Wafer Scale Integration................................ 6
3. Introduction to CHiP Processors .. 11

CHAPTER 2 - YIELD MODEL.. 14

1. The Price Model.. 15
2. Yield Model tor Analysis of Fault Tolerance 17
S. Probability Density Function... 21
4. Comparison of Yield Models.. 29

a) Distinguishable Defects .. 34
b) Indistinguishable Defects ... 38

5. Applications of the Yield Model.. 43
a) Recovery Analysis .. 45
b) Fault Tolerant CHiP Modules... 52
c) Optimum Lattice Size.. 61
d) Design Analysis ... 64

CHAPTER 3 - TWO LEVEL HIERARCHY... 70

1. The Structuring Problem ... 71
2. Global Strategy .. 76
3. Two Level Decomposition ... 70

CH-APTER 4 - BUILDING BLOCK DESIGN....................................... B5

-£1. Block Requirements ... 131.1
a) Block Yield ... 9
b) Wire Around Capability I.....I.....I................. 89

2. Processing Element Design .. 900
a) Functional Requirements.. 93
b) Processor Characteristics .. 97
C) Layout and Area Estimation 101

iv

3. Datapath Design .. 108
4. Switch Design... 112

a) Switch Layout.. 112
b) Switch Yield ... 112

5. Lattice Design... 115
a) Processing Elements ... 120
b) Switches.. 120
c) Mappability... 127
d) Wire Through .. 129

CHAPTER 5 - A WAFER SCALE CHIP PROCESSOR 132

1. Wafer Layout .. 132
2. Lattice Dimensions ... 136
3. Column Exclusion .. 143
4. External Connections .. 145
5. Efficiency .. 147
6. Effect of Technological Advances .. 152

a) Wafer Size .. 154
b) Device Scaling ... 157

7. Practical Implementation Considerations.............................. 162
a) Power Consumption .. 163
b) Skeleton Routing .. 172
c) Clocking .. 176

CHAPTER 6 - TESTING CHIP PROCESSORS 178

1. Design for Testability .. 187
2. Model of Lattice Testing... 188

a) Definitions... 189
b) Testable Components... 191
c) Goals of a Testing Procedure I....198

3. Lattice Testing.. 199

CHAPTER 7 - CONCLUSIONS.. 213

1. Summary of Results ... 213
2. Implementation of General Wafer Scale Integration................. 214
3. Restruoturable Design Methodology 215
4. Future Research.. 223

a) Penalties for Restructurable Circuitry 223
b) Modular PE Design.. 224

BIBLIOGRAPHY ... 228

APPENDIX 1 - SUMMATION OF RANDOM VARIABLES...................... 235

1. Lumped Approximation.. 238
2. Two Class Approximation.. 238
3. Extension to Three Classes ... 242

VIT'A..248 PA

LIST OF TABLES

Table Page

2.2.1 Expected Number of Defects as a
Function of Area (in NUA) .. 23

2.3.1 Probability of m Fatal Defects as a
Function of Area (in NUA) ... 25

2.3.2 Cumulative Probability of m Fatal Defects
as a Function of Area (in NUA) .. 31

2.4.1 Comparison of Gaussian and Poisson Approximations 37

2.5.1 Recovery Probability (0-4 Redundant PEs) 49

2.5,2 Recovery Probability (5-8 Redundant PEs) 50

2.5.3 Recovery of Four PEs in N PEs .. 54

2.5.4 Optimum Lattice Size for the
Recovery of Four PEs .. 62

2.5.5 Optimum Lattice Size to Maximize
Number of Good Chips Per Wafer .. 62

4.1.1 Effect of Block Yield on Grid Size
(W orst Case) .. . 88

4.1.2 Comparison of 98% and 99% Block Yield 88

4.2.1 Area Estimation for a Processing Element 103

4.5.1 Effect of Switch Yield on the Number
of Faulty SwiLches Per llock ... 125

4.5.2 Probability Density of Defective Switches 125

5.2.1 Size of Wafer Scale Processorfor 8 x 8 G rid ... 139

.

vi

5.2.2 Wafer Area Occupied by a Grid of
B uilding B lock s ... 139

5.2.3 Size of Wnfer Scale Processor for
9 x 8 G rid ... 13 9

5.2.4 Size of Wafer Scale Processor for
9 x 9 G rid ... 14 0

5.2.5 Size of Wafer Scale Processor for
10 x 9 G rid ... 14 0

5.6.1 EflecL of Wafer DiarneLer on the
W afer Scale CHiP Processor ... 155

*0 .0 2theL o;r Decvid Scaling on Lhe Wafer

Scale CH iP Processor ... 160

'1

r.r

.-- -..-. - 4

Vii

UIST OF FIGURES

KFigure Page

1. 1. 1 Structuring by Column Exclusion .. 4

1.1.2 Interrelationship of Main Concepts....................................... 7

1.3.1 Three CHiP Processors (Circles Represent

*Switches; Squares Represent PEs) 12

1.3.2 Mesh Configured CHIP Processor.. 12

2.2.1 Yield vs. Area (in NUA -
Normalized Unit Area)... 22

2.3.1 Probability of in Fatal Defects
as a Function of Area (in NUA).. 27

2.3.2 Cumulative Probability of m Fatal Defects.......................... 30

2.4.1 Taxonomy of Yield Models ... 33

2.4.2 Probability of m Defects
(Area = 1.0 NtJA)... 40

2.4.3 Probability of m Defects
(Area = 2.0 NUA)... 41

2.4.4 Probability of m Defects
(Area = 3.0 NUA)... 42

2.5.1 Recovery Probability vs. Number of Processors.................... 48

2.5.2 Recovery Probability for Four PEs
in N PEs ... 53

2.5.3 2 x 2 Virtual Lattice
(Datapaihs Not Shown ... 56

Viii

2.5.4 3 x 2 Physical Lattice

(Datapaths Not Shown).. 57

*2.5.5 Example of a Partial Mapping .. 59

2.5.6 Complete Mapping of the Virtual Lattice
Into the Physical Lattice ... 60

2.5.7 Optimum Lattice Size to Maximize
Number of Good ChipFs Per Wafer... 65

2.5.8 Effect of Scaling on Recovery
(Scale Factor = 0.5) .. 617

2.5.9 Effect of Scaling on Recovery
(Scale Factor = 0.25)... 68

3.1.1 Example of a Structured Wafer -
4 x 4 Virtual Lattice in a
6 x 5 Lattice ... 73

3.1.2 4 x 4 Virtual Lattice Which Is
Functionally Equivalent to the Structured Wafer...................... 74

3.3.1 Composition of Lattices of Identical Size............................ 80

3.3.2 Composition of Lattices of Nonuniform Size 81

3.3.3 Structuring With the Two Level Hierarchy 82

4.1.1 Example of Wire Through in a
Building Block .. 91

4.2.1 Systolic Algorithm for Band Matrix
Multiplication (from [MeadBO])....................................... 96

4.2.2 Processing Element Layout -
a Schematic Floor Plan ... 102

4.3.1 Approximate Relative Sc of a
i-EI, Switch and Datapatii.. 110

4.4.1 Switch LayouL - An Approximate Floor Plan....................... 113

4.5.1 Recovery Curve for 4 PIs

in N PE s.. 117

. . . .L

j~I ix

4.5.2 Virtual Lattice to be Mapped
Into a Building Block ... 118

4.5.3 Building Block for a Wafer Scale

CH iP P rocessor ... 124

4.5.4 Wire Savings Due to Switches With

Degree 8 and Crossover Capability ... 128

5.1.1 Layout of a Wafer Scale CHiP Processor 135

5.4.1 Redundant Pad Drivers for High Reliability 148

5.7.1 Enhancement Mode Transfer Gate with
R eference V oltages ... 173

5.7.2 Implementation of Programmable
Power Down M echanism ... 174

6.0.1 Indirect Testing via a Path of Switches 181

6.0.2 Testing with the Reflective Switch ... 182

6.2.1 Exam ple of a Generic Path .. 192

6.2.2 Three Paths Required to 'rest a Port ... 195

6.2.3 Testing a Port 196

6.3,1 Testing a Port P air .. 20 1

6.3.2 Testing a PE Square .. 205

7.3.1 Advantages of Restructrablc Design Methodology 219

7.3.2 Spectrum of Semiconductor Devices ... 220

7.3.3 Elements of the Restructurable Design Methodology 220

Appendix
Figure Page

Al.1 Probability of j Defects ClusLering
in 4 of 16 P E s ... 2 4 7

x

ABSTRACT

Hedlund, Kye Sherrick, Ph.D., Purdue University, December 1982. Wafer
Scale Integration of Configurable, Highly Parallel Processors. Major Profes-
sor: Lawrence Snyder.

Integrated circuit size (and hence complexity) is limited by the fact

that chips created using current design techniques will not function

correctly in the presence of even a single circuit defect. This research

examines the problem of constructing chips up to the size of the wafer

(wafer scale integration) that operate correctly despite the occurrence of

such flaws. We concentrate on a particular family of parallel processors,

configurable, highly parallel (CHiP) processors.

The key problem in the implementation of wafer scale integration is

structuring the wafer so that only the functional PEs are connected

together. A methodology, the two level hierarchy, that efficiently and

economically solves the structuring problem for CHiP processors is

presented. The principle elements arc the use of column exclusion with high

yield building blocks that contain redundant components. This approach

limits the performance degradation due to structuring and allows the struc-

Luring problem to be solved with tractable computational effort.

Since the yield of building blocks must be high for the two level hierar-

chy to bc a lra.Lical approachl, yield pliconicLa arc investigated in detail.

A model of thl inLegrated circuiL nianufaeLurinig process is developed that

r
predicts circuit yield and the probability distribution of manufacturing

xi

defects. These results are applied to the analysis of parallel processors in

which several PEs occupy a single chip. In addition, they are used to design

the building blocks meeting the requirements of the column exclusion stra-

tegy.

It was shown that these building blocks can be assembled into a wafer

scale CHiP processor. With current technology, it is possible to fabricate a

wafer scale system with 250 to 300 PEs. 'This represents a truly large paral-

lel machine. Furthermore, this machine is highly robust to faults occurring

during the machine's lifetime, consumes a manageable amount of power and

can be efficiently tested.

Although thc techniques for implementing wafer scale integration were

developed for CHiP processors, thcy can be applied to other system com-

posed of uniform parts.

U

!1

CHAPTER 1

INTRODUCTION

The question that motivated this research is: how can VLSI technology

be utilized in the design of parallel processors? With VLSI technology it is

possible to fabricate chips containing hundreds of thousands of transistors.

But designing and debugging a complex integrated circuit is a lengthy and

costly process. To reduce this cost and delay, it is necessary to decompose

a circuit into a few different types of small substructures with simple

interfaces. Technology favors replicating many copies of a simple circuit.

Consequently, this research analyzes parallel processors that are

composed of a large number of simple processing elements (PEs). Each PE

is a simple microprocessor and can be fabricated on a single piece of silicon.

Large mainframe computers in which a single processor contains thousands

of chips are not within the scope of this research.

This work concentrates on a particular family of parallel processors,

configurable, highly parallel (CHiP) computers. Although the techniques for

implementing wafer scale integration are developed for CHiP processors,

they are entirely general and can be applied to other systems composed of

uniform parts. This includes parallel processors with fixed interconnection

structures, memories, etc. In Chapter 7 some extensions and

• . ., . . . - - . . - . ., : - - . . - ... " .- -. . ' " . ' .- ,

2

generalizations of this work are discussed.

The goal of the CHiP processors considered in this work is to provide

substantial parallelism at low cost. For problems that can make use of this

parallelism, high performance results. We are not attempting compete with

the Cray 1 nor are the machines intended to be completely general purpose.

It is hoped that CHIP processors will have wide applicability, but this is an

open question and a subject of further research.

1. Wafer Scale IntegraUon

Many different architectures for parallel processors have been

proposed but few large-scale parallel systems have actually been built. One

reason is that a large-scale parallel processor consists of a great many

components. This introduces severe practical problems of construction,

wiring and reliability. If the number of individual components could be

decreased, parallel processors would be far easier and cheaper to construct.

The absolute minimum number of components is reached when the

entire parallel processor is fabricated on a single piece of silicon. These

wafer scale systems have greatly reduced cost due to the increased level of

integration. Reliability is higher since the connections between processors

are implemented in silicon. Furthermore, there is the potential for

increased preformance since data values passed between processors are not

driven off the wafer.

Consider the implementation of a wafer scale system. Fabricating high

density integrated circuit. is a delicate process. On any given wafer, many

of the chips will contain defects - errors in the circuitry such as broken

3

wires or nonfunctional transistors. Defects are randomly distributed over

the wafer surface. They are caused by imperfections inherent in the silicon

or are introduced during the manufacturing process. Consequently, it is not

unusual for complex circuitry to yield only 5-10% working integrated circuits

from any one wafer.

To implement a wafer scale system, all chips on a wafer are tested, and

then the good chips are connected together. The wafer is structured so that

the presence of faulty chips is masked and only functional chips are used.

This structuring problem is the key problem in the implementation of wafer

scale integration (WSI). With low yield, the good chips are sparsely and

irregularly distributed over the wafer surface so the key problem is to

provide a highly flexible means of connecting chips.

Consider the problem of connecting functional chips in a mesh pattern.

This is fundamental for constructing CHiP computers. The structuring

problem is made difficult by low chip yield. For any particular good chip. it

is very unlikely that all its four neighbors wil also be functional; the

positioning of good chips on the wafer differs from the required connection

pattern - the mesh. Hence, considerable wiring may be required to connect

a chip to its neighbor in the mesh.

Now suppose that most chips are functional. The good chips are

distributed in a more regular pattern - one closely resembling a mesh. This

simplifies the structuring problem. For example, Figure 1.1.1 shows a wafer

containing a 4 x 5 grid of chips with only one faulty chip. A 4 x 4 mesh is

obtained by excluding all chips in the column containing the fault. This

strategy is called column exclusion. The only requirement is that we can

,.,

D El El4

Figure 1.-1.-1 - SrUmeturing by Column Exclusion

7- 1. 7'

5

wire around faulty or unused chips. This strategy has been used in 64K

memories [Cenk7T, Eatogl, Kokk8l] and in a computer architecture on

Massively Parallel Processor [13atc79].

For this simple approach to be practical, the wafer must contain very

few faulty chips. But due to the nature of the integrated circuit

manufacturing process, high yield is achievable only with very simple chips -

much less complex than a processing element that is needed for a parallel

processor.

But suppose the units patterned on the wafer are not individual

processors but building blocks of a mesh. With each block contributing a

small mesh of fixed size, the blocks can be assembled to form a larger mesh.

For example, with a 4 x 4 grid of blocks each containing a 2 PE by 2 PE

mesh, a mesh with 8 PEs on a side is formed. The key idea is that each block

will contain sufficiently many redundant PEs to insure that a small,

functional mesh will exist within almost every block. Virtually every block on

the wafer will contribute a small subpart to the overall structure, so the

structuring problem can be solved by eliminating the columns (or rows)

containing the relatively rare blocks which are completely dysfunctional.

This technique is practical if the blocks meet two requirements:

Ki 1) Blocks must have high yield; most blocks must contain a smaller,

fully functional mesh.

2) Blocks that arc unused or faulty can be "wired around" to connect

the two blocks in the adjacent columns.

I.

K.

6

In the remainder of this chapter, we survey previous work on wafer

scale integration and give a concise summary of the ideas behind CHiP

processors. The approach to wafer scale integration using column exclusion

and building blocks is discussed in more detail in Chapter 3. Since the yield

of building blocks must be high, yield phenomena are investigated in

Chapter 2. In Chapter 4. the yield results are used to design the building

blocks of a wafer scale CHiP processor. The assembly of the blocks into a

complete wafer scale system is the topic of Chapter 5. The testing of CHiP

processors is discussed in Chapter 6, and the final chapter provides a brief

summary of the results along with possible extensions and generalizations of

this research. Figure 1.1.2 shows the interrelationships of the main

concepts in this thesis. The numbers in parenthesis indicate the chapters in

which the topic is discussed.

2 Previous Work on Wafer Scale Interaion

Research into wafer scale integration has been conducted for over

fifteen years starting with discretionary wiring. In this approach, modules

(PEs, memory units, etc.) are patterned on the wafer and are individually

tested by wafer probing. A wiring pattern to connect together the good

modules is automatically generated. This wiring is implemented by extra

levels of metal interconnections that are placed overtop the modules. The

structuring problem is solved by these extra layers of customized wiring.

Discretionary wiring was strongly backed by both Texas iliLruniciiLts

and the Air Force. Despite strong funding and years of researcit, it never

became a practical means of implcmentin3 W;I. There ar-w , i. uajor

problems with this approacl-

,! 7

Generalized Techniques (7)

Testing (6) Implementation
Considerations (5)

Wafer Scale CHiP Processor (5)

Two Level Building Block
Hierarchy (3) Design (4)

Structuring Analysis of Parallel
Problem (1, 3) Processors (2)

Wafer Scale
"; Integration (1) Yield Model (2)

Figure 1.1.2 - Interrelationship of Main Concepts

" I

* Excessive cost. Defects are randomly distributed over the wafer

surface. With a large number of modules per wafer, there are an

enormous number of different patterns of good and bad modules. This

requires that a unique set of photolithography masks be made to define

the wiring pattern for each individual wafer. This is prohibitively

expensive [Aubu78].

*Faults occur in the upper levels of metalization used for structuring.

The topmost levels of interconnection, as with the lower levels, are

subject to faults such as poor contacts between levels and shorts to

underlying levels [Aubu78, IEEE82]. These faults effect not just a single

module but the entire wafer.

As these problems surfaced, researchers attempted to reduce the

complexity of the custom wiring. Each level of interconnection requires two

photolithography masks. One deflnes the wiring pattern, and the other

determines the connections between levels. The initial work on

discretionary wiring required two customized metalization levels and hence

four unique masks for each wafer.

The pad relocation technique [Calh72] reduces the number of unique

masks to one. A single, standard wiring pattern on the topmost metal level

interconnects fixed position "pads" on the first level of metalization. This

lower metalization level is customized for each wafer to relocate the wiring

of modules to Lhc pads. Only etlad modulej aro onn,..cLcd Lu a pw . Te

upper level mlakes- a standard oqucICe ,i . £iC., . ,* ,,. L

locations, the padu, and the volccLioiis between pads w;id niodules varies

9

in response to the defect pattern of the particular wafer. Only the mask

defining the lower metalization level need be modified from wafer to wafer.

Despite this cost reduction, pad relocation did not produce reliable and

economical wafer scale systems. The problems are the assumptions that

the customized processing steps would be fault free and that no modules

tested as good would fail during the remaining processing. It was recognized

that the additional processing steps required to define the customized

wiring are the Achilles heel of these approaches.

The work of Manning [Mann75] and the independent but closely related

research of Aubusson [Aubu73, Aubu78] proposed solutions to the

structuring problem that required no extra wafer processing steps. The

essential feature of the approach is that each module can be externally

programmed to connect to any of its immediate neighbors. There is an

implicit switching mechanism within each module. By selectively connecting

modules only to functional neighbors, a linear array of good modules can be

"snaked" through the grid of modules on the wafer. Heuristics for

maximizing the length of the chain were developed [Aubu78, Fuss82.

Mann75].

Since no extra processing steps are required, this solves the problems

that plagued discretionary wiring and pad relocation, but at the cost of

flexibility. The wafer is structured only into a linear array; the solution to

the structuring problem is only one dimensional.

The structuring of the wafer into a richer set of two dimensionalU. configuraLiono is a major probleni m the implcmenLation of wafer scale

systems. Fussell and Varmian [F'ussL2J have presented algorithms for a

r.[.i .-" .. . __ _

10

priority queue and a triangular array capable of performing the

multiplication of a band matrix and a vector. Koren [KoreIl] developed

algorithms for a binary tree and a mesh.

Recent advances in integrated circuit manufacturing may provide new

methods for implementing wafer scale integration. The most promising of

these is laser programming [Kuhn75, Logu8O. ManoB0, Wu82]. Submicron

thick layers of quartz sandwich the uppermost level of metal with a lower

level of metal underneath. A series of short laser pulses burns through the

quartz layers to weld the two metal levels. This forms a low impedance

contact.

The use of laser programming to implement wafer scale systems is

under investigation at Lincoln Laboratories [Chap]. Modules are patterned

on the wafer with fixed wiring corridors between them. Vertical wires are

run in the first metal layer and horizontal wires in the second. Initially, the

modules are unconnected. After testing, laser programming makes the

connections required to interconnect the functional modules,

This technique resembles discretionary wiring. Although the wiring

pattern is fixed, the connections between wires are completed after testing.

But with advances in semiconductor processing technology, wiring channels

can be manufactured with high reliability. Also, the laser welds form low

impedance contacts with very high probability. Thus there are very few

faults in the custom wiring.

However, this approach has one serious dravback. TQu con1ctio,,.

made with laser programming arc 3Latic; once they made they cav i uL bo

clialngCe. A wafer scale systecu n t;lcoiLLutia~ thkaidc-- ul U 'Lhu.-ds ui uw,. .

11

and millions of transistors. During the lifetime of a system, faults are very

lilely to occur. It is certainly undesirable to discard an entire wafer due to

a .ingle faulty transistor. With laser programming, there is no method of

'ccoi figuring the wafer after manufacLuring. A single fault during the

L ysLen lifetime may disable the entire wafer scale sysLemi.

3. Introduction to CHIP Processors

A brief introduction to CHiP processors is presented here. More

detailed information can be found in [Snyd82a]. The CHiP processor is a

family of architectures each constructed from three components: a

collection of microprocessors, a switch lattice and a controller. The switch

lattice is the most important component and the main source of differences

between family members. It is composed of programmable switches

connected by datapaths. The microprocessors function as the processing

elements of the system. They are not directly connected to each other, but

rather are inserted at regular intervals into the switch lattice. Figure 1.3.1

shows three different switch lattices. The perimeter switches are connected

to external storage devices.

Each switch has local memory capable of storing several configuration

settings. A configuration setting enables the switch to establish a direct,

static connection between two or more of its incident datapaths. (This is

circuit switching rather than packet switching.) Figure 1.3.2 shows a mesh

configured Cl-liP processor. Switches in alternating columns arc assigned

the North-South configuration setting and every other row has switches set

to connect Ea,.L to West. The controller is responsible for loading the switch

memory and the programs inLo he PEs. It is the supervisor of Lhe CHiP

12

Na 4b)

(C)

Figure 1.3.1 - Three CHiP Processors (Circles Represent
Switches; Squares Represent PEs)

F 1 0 M o

-0- 0--0 -

0 0

0-- 0-0O--

Figure 1 .3.2 - Mesh Configured CHiP Processor

13

processor and is responsible for starting and stopping the PEs.

Members of the Cl-iP family are distinguished by their lattice

parameters:

*degrce - number of incident datapaths

cros~ovcir - numnbcr of diStinct datapaLli groups that a switch can

simiultaneously connect

ocorridor width - niumber of switches that separate two adjacent PEs.

The lattice of Figure 1.3.1a, the white lattice, is a simple Ch-iP structure

having degree [our, one crossover and a corridor width of onle.

14

CHAPTER 2

YIELD MODEL

The implementation choices that must be made when designing a fault

tolerant CHiP machine are strongly influenced by the percentage of faulty

processing elements within the parallel processor. For example, greater

flexibility in interconnecting the PEs may be required if a large fraction of

PEs are faulty than if only a small number fail. Furthermore, redundancy

can be used to increase the yield of a CHiP lattice. The amount of

redundancy r quired to achieve a given yield depends on the mean number

of faulty PEs. Consequently, a necessary prerequisite to the analysis of fault

tolerant parallel processor design is to determine the number of faulty

processing elements. This problem is the focus of this chapter.

This research analyzes implementations of CHiP machines in silicon. A

number of PEs will be fabricated on a single area of silicon called a building

block. A complete CHiP machine consists of one or more building blocks. The

individual building blocks may reside on separately packaged chips or, in

wafer scale systems, on different portions of a single piece of silicon. Since

the occurrence of defects on a silicon wafer is a random process, the exact

number of faulty PEs cannot be predicted. Instead, a probability density

function describes the fault proccss. This is the probability that a given

15

number of defects will occur. It is dependent on many interrelated factors

of design and semiconductor processing technology. A yield model is a

mathematical model of the integrated circuit manufacturing process that

relates the probability of the occurrence of defects to factors such as defect

density, design rules, etc. The design parameter most directly controlled by

the computer architect is the area occupied by a building block.

Consequently, a yield model and the corresponding density function

dependent on the silicon area will be derived below.

The starting point for the development of the yield model is a widely

accepted model due to Price [Pric70]. It will be simplified to exclude factors

that pertain to the fabrication process but are not under the control of the

silicon architect, and some parameters will be assigned values appropriate

for the implementation of CHiP machines. The end result of the modeling of

the semiconductor fabrication process will be a function, Pr(Z=m; A),

computing the probability of exactly m defects occurring within an area of

silicon, A. This function will be used to compute the expected number of

defective PEs in a building block. It will be a workhorse in the analysis of

the effect of fault tolerance on parallel processor design.

1. The Price Model

The starting point of our development of a yield model is the multistep

Price model [Pric70] which is one of Ihe more realistic models of integrated

circuit manufacturing [Glas79, SLap76J. It has shown close agreement with

empirical evidence [Glas79, CcnkBl]. Underlying this model arc several

assumptions:

16

1. All point defects belong to one of k distinguishable classes of

indistinguishable defects. Defects in different classes can be told apart

by inspection, but within a single class, defects are indistinguishable.

Each class represents the defects introduced by one critical masking

step in the fabrication process. (Throughout this paper we use the

terms processing or fabricationt step to refer to a critical masking step,

not operations such as etching, oxide growth, etc.)

2. Each of the fabrication steps is independent of the others; the

number of defects introduced by the ith step does not depend on the

number of defects introduced by previous steps. This a direct result of

the design rules. Design rules incorporate sufficient spacing between

levels such as polysilicon and diffusion to insure that a minor mask

misalignment will not create unwanted transistors. Furthermore,

design restrictions such as not allowing contact cuts overtop gates

insure that the processing at upper levels will not damage fragile

portions of underlying layers. The primary consequence of this

assumption is that the total number of defects is the sum of the defects

introduced by each processing step.

3. The density of fatal defects is the same for each fabrication step. On

the average, each processing step contributes equally to the probability

of a fatal defect occurring. Yield is maximized when all steps

contribute equally to the introduction of defects. Consequently, the

design rules are set to insure this. For example, the metalization layer

runs over rougher terrain than does the polysilicon layer. This makes

metal lines more susceptible to breaks and shorts so metal line widths

17

and spacings are typically larger than for the polysilicon layer.

From these assumptions, we can derive the following relationship [Glas79]

Y CC= (1.1)

(1 + d Q(r/ ro)F

where Y is the yield (i.e., fraction of chips which are functional). The

parameters have the following interpretations:

C fraction of wafer area not wasted due to clustering defects

Q(r/r 0) represents the effect of the design rules employed on the specific

circuit. It depends on the minimum spacing, r, and an empirical

threshold spacing ro. When r approaches r0, Q(r/ro) >> 1 and the

yield drops appreciably. With relaxed design rules, r > ro and

Q(r/r 0) approaches a limit q' with 0 < q' - 1, and yield increases.

k number of critical masking steps (i.e. number of defect classes)

d defect density/chip for a single fabrication step

The above model will be modified to make it applicable specifically to

the analysis of fault tolerant parallel processors. Parameters representing

4details of the fabrication process or the design rules will be eliminated, and

speciflc values for other parameters will be introduced. The result will be a

simplified model relating the yield to the chip area.

2. Yield Model for Analysis of Fault Tolerance

The following simplifications in the above model are made to tailor it to

the analysis of fault tolerant design:

4(

At
S -~ -

. . . 2
18

1. Only random defects are considered. (Throughout this paper, the

term defect will refer to a fatal defect; one that causes the circuit in

which it occurs to function incorrectly.) It is assumed that defects have

no tendency to cluster on any portion of the wafer [Stap75, Stap76.

Stap8O, Stap82, Sait82]. Non-random defects are due to scratches in a

photolithography mask, surface imperfections resulting from polishing.

etc. Currently, the number of non-random defects per wafer can be

made low (e.g., 1-2 for a 2" wafer). Improvements in processing

technology and increased care in handling wafers during fabrication

can reduce the number of non-random defects. Experience at Lincoln

Laboratories shows that they can be virtually totally eliminated [Chap]

by more careful wafer screening, increased care in wafer handling and

more frequent mask inspection. Consequently, we assume C = 1.

2. A 4-layer process is assumed. Currently, a 3-layer process defining

three levels of interconnection (diffusion. poly and metal) is common.

For implementation of Cl-liP processors, iL is highly desirable to have an

additional level to facilitate the interconnection of PEs and the routing

of common control and power signals (the skeleton). Since metal has

the lowest RC constant, it is desirable to use an additional level of metal

for the relatively long wires or the skeleton and for the wires between

PEs. A two level metal process is in use by several inanufacLures. Thus

it is reasonable to assume such a process for CHiP implementation.

Consequently, we assume there are four interconnection levels

(diffusion, poly and two inctal iayers), and we IcL k 4.

19

These simnlifleations reduce equation 1. 1 to

. (1 + d Q(r/r 0))4

Yields vary greatly depending on the particular fabrication line, the

process being run, etc. It is undesirable to have the results of this work

apply only to a specific circuit or fabrication process. The results should be

independent of the semiconductor processing details. Consequently, the

many processing and design factors must be lumped together into a single

factor. To accomplish this, rather than measure area by absolute quantities

(e.g., square mils), we will introduce the concept of normalized unit area.

Yield depends on both the details of the circuit layout and the design

rules employed since different layouts will have different sensitivities to

variances in the design rules. In Chapter 4, the design of a "standard" PE for

CHiP processors is outlined. It has an 8-bit ALU with 64 bytes of memory and

a simple arithmetic oriented instruction set. This is sufficient to execute a

wide variety of systolic algorithms [Snyd82a]. This is the yardstick by which

PIE complexity will be measured.

From one fabrication line to another, the design rule spacings of the

circuit layout of the standard PE can be modified to change the yield.

Relaxed design rules will increase both the yield and the area occupied by

the PE while tight design rules can be used on fabrication lines with more

precise manufacturing tolerances to pack more PEs into a given area. Thus

the design rules and the yield can be traded off against each other (within

certain limits). Depending on the particular fabrication line, the design

rules are adjusted so that the standard PE is produced with predetermined

yield.

20

A normalzed unit rea (NUA) is the silicon area occupied by a 2 x 2

white lattice of standard PEs with the design rules set to achieve a 20%

yield of the lattices.

(The yield for the unit area definition assumes no fault tolerance; one defect

renders the chip dysfunctional). The 20% yield Figure is somewhat arbitrary

but was chosen so that a normalized unit area represents a medium to

medium large chip. All area measurements in this work will be in terms of

normalized unit area with the understanding that the exact size of a NUA will

vary from one fabrication line to another, with improvements in

semiconductor technology, from nMOS to CMOS implementation, etc.

To convert equation 2.1 to units of normalized unit area, we define

so = average number of defects per normalized unit area for a single

processing step

We can then replace d Q(r/ ro) in the yield model by A so

Y = (2.2)(1 + A s) 4 (

where A is the chip area measured in NUA. The concept of unit area has

eliminated the dependence on the design rules and the particular circuit

being manufactured. The area of a building block will be measured relative

to the area of the standard 2 x 2 whiLe lattice.

To determine the value of so , solve equation 2.2 for so. ly definition

Y 0.20 aL A= 1.0 so

21

so = (0.20) - / 4 - 1 0.495 (defects per unit area per step)

Figure 2.2.1 shows the yield as a function of the chip area measured in

NUA. Note thaL the yield drops steeply at first then levels off at low yield.

This is consistent with empirical evidence. Defects limit chip area; nhips

that are too large have prohibitively low yield.

lecause the processing steps are assumed independent and the total

number of defects is the sum of the defects introduced by each processing

step, do, the average number of defects per normalized unit area after all

four fabrication steps is
-4

do = 4So = 1.98 (defects per unit area)

do is a fundamental quantity in the analysis of fault tolerance. From it we

know the mean number of defects in a CHiP lattice of a given area - since

defects are randomly distributed, the expected number of defects in area A

is Ado (Table 2.2. 1).

3. Probability Density Function

The yield is the probability of no defects. Since we are concerned with

l the design of fault tolerant machines, a certain number of defects (the

exact number depends on the design details) can be present without

rendering the machine dysfunctional. Therefore, rather than yield, we are

. interested in the number of defects and their probability distribution. It is

at this point Lhat this research diverges from previous work on yield models.

The design of fault tolerant CI-liP processors requires a more detailed

• examination of the fault distribution.

U

22

I4

.4

.45

.3

.25

.15

.05

0.
.. 75 1.25 151.75 2.2.25 252.75 3

Area (NUA)

figure 2.2.1 - Yield vs. ie. (in No&
Iormalized unit Area)

23

Table 2.2.1 - Expected Number of Defects as a
Function of Area (in NUA)

Area Expected Number
(in NUA) of Defects

.6 1.19

.8 1.58
1.00 1.98
1.25 2.48
1.50 2.97
1.75 3.47
2.00 3.96
2.25 4.46
2.50 4.95
3.00 5.94

4.

4.

4

24

The probabiliLy that exactly m defects occur in a lattice of area A is

denoted by Pr(Z=m; A). where Z is a random variable representing the

number of defects. For a design that can accommodate up to m' defects

and occupies area A, tho probability that the machine is functional is

Pr(Z-5m'; A). When the area is a fixed quantity, the area parameter will

sometimes be omitted and the density function abbreviated as Pr(Z=m).

Let zi be the random variable denoting the number of defects

introduced by the ith processing step and Z be the number of defects after

all processing steps. Pr(zi=m) follows a geometric distribution [Glas79]

Pr(zi=m; A) = p(1-p)m withp 1 A~1 + Aso

where so is the defect density.

In a multistep process, total number of defects is the sum of the

defects introduced by the individual processing steps. Hence, for a given

area, A, Pr(Z=m) is the sum of independent and identically distributed

geometric random variables. For a four step fabrication process,

Pr(Z=m) = Pr(z + z2 + z3 + z4 = m)

Juinming the four independent vacibles',we have

1'1| i 1l1 ' "

llr(Z=ni) = llr(zl=i) irzc-) '' " " " ",.-- ,- - - ; "

1-:U j=O

= n(m+-1) (in.-2) (m+3) p4(1-p)"'

G)

25

where ij and k are the number of defects introduced by the llt,2nd and 3rd

processing steps. The derivation of this equation is given below.

Derivation - Summation of Geometric Random Variables

Assume tiic random variables zI, z2, z3 , 2: are independent and have

identical gconetr'ic disLribuions, Pr(zi=u) = pq" with q = 1-p. We will

derive the distribution for the suni of 2, 3 and 4 of the random

variables. The four variable case represents the probability of m defect

as predicted by the 4 step Price yield model, the primary model used in

this research.
K

4q Two Random Variables:

V. The m successes must be divided between the two random variables. z,

can account for between none and all of them with z, making up the

remainder.

Pr(z + z2 =m) = >. Pr(z, =i) Pr(z2 =-i) =
i=0

pqi pqmi = p~q = (m+1)pqm
i=O izO

Three Random Variables:

Divide the successes into two groups. those of z! and those of z2 and z3

combined. The total number of successes, in, can be arbitrarily divided

:4 between the two groups, and the two random variable result from above

can be u-.cd to evaluate I'(:%, + z, = n-i).

Kl Pr(z, + zs + Y3 = "'. Pr(z, = i) Pr(z2 + z = n-) =. I -.4

28

Spq' (m-i+1)psqm-i p~qm 1= (m-i+1)

A~IM (m+ 1) 1+ M = it(+) m(m+ 1)]=

Four]Random Variables:

Analogously to the three random variable case, we partition the random

variables into two groups: izil and IZ2., ZZ4[. The three variable result

from above is employed.

Pr(z1 + Z2 + Z3 + Z4 = M) E Pr(z1 = i) Pr(z1 + Z2 + Z3 = i-i)=
1=0

E= pq! 1 (M-i+1) (m-1i-2) p~qflV4

1 4q,
1=0 (m-i+ 1) (m-i+2)=

~-p Em 1. (in2 + 3m + z) +~= (2m+3) i)

pqn r+l) I(nr+3m+2) + L-m~m+1) (2m4-1) - (2m+3) L-m(m.I-)J=

1 (m+1) (m+2) (m+3) pq

Figure 2.3.1 and Table 2.3.1 show the probability of m defects, Pr(Zm;

A), for several different areas measured in units of NUA. It is important to

observe that for smaller areas the curves peak at a very small value (e.g. 1 -

2) of m. This means the chances of a large number of defects is quite small.

27

.25

Area -OS.
-~.2 Ao&-1.0

.0 Area u 2.0
----Area - 3-O

0 4 12

a* a .clno Ae I U

28

Table 2.3.1 - Probability of m Fatal Defects as a Function of
Area (in NUA)

Pr(Z m; A)

number of Area (in NUA)
defects(m) 0.6 1.0 2.0 3.0

0 .353 .200 .064 .026
1 .324 .265 .127 .063
2 .185 .219 .158 .094
3 .085 .145 .157 .112
4 .034 .084 .137 .117
5 .012 .045 .109 .112
6 .004 .022 .081 .100
7 .001 .010 .058 .086
8 .000 .005 .039 .070
9 .000 .002 .026 .056
10 .000 .001 .017 .044
11 .000 .001 .011 .033
12 .000 .000 .007 .025

I.

29

For example, in a unit area, the probability of 6 defects is 2% whereas a

single defect occurs 27% of the time. Consequently, the cumulative

probability, Pr(Z-5m; A), rises quickly (see Figure 2.3.2 and Table 2.3.2). This

means that at low yield, even though there is a large probability of at least

one defect, the number of defects is likely to be small. The yield of the

whole fabrication process is the product of the yields of the individual steps.

With four processing steps and under the assumption of identical yield at

each step, overall yield equals the yield of an individual step to the forth

power (equation 2.2). The yield of a single step is inversely proportional to

the chip area. Consequently, yield decreases quickly as chip area increases

(Figure 2.2.1); yield is the product of four identical terms. On the other

hand, the probability distribution of the number of defects per chip, Z, is

the sum of four identically distributed random variables. This exhibits a

peaked distribution in which the probability of a large number of defects is

small.

4. Comparison of Yield Models

In the previous sections, a multistep Price yield model was developed.

Is this particular model the most appropriate? There are other yield models

such as the Poisson and Gaussian models which are based on slightly

different and less realistic assumptions about the semiconductor

manufacturing process. However, their mathematical formulation is

considerably simpler than the Price model. Are they sufficiently accurate

for the types of problems we will consider? Can a good approximation be

obtained with simpler mathematics? This section examines the different

4,

30

.

p .7

0
Ar.. * .O

M-o - A

.3 ------ Aree 13

41 /

0 4 8 12
2 6 10

a Number of Defects

Fiure 2.3.2 -Cusulative Probability of a
Fatal Defects

31

Table 2.3.2 - Cumlative Probability of in Defects as a Function of
Area(in NUA)

Pr(Z5 m in A)

number of Area (in NUA)
defects(m) 0.6 1.0 2.0 3.0

0 .353 .200 .064 .026
1 .677 .465 .191 .089
2 .862 .685 .348 .183
3 .947 .830 .505 .294
4 .981 .914 .642 .412
5 .994 .959 .751 .523
6 .998 .981 .832 .624
7 .999 .992 .890 .709
a 1.000 .996 .929 .780
9 1.000 .998 .956 .836

10 1.000 .999 .973 .880
11 1.000 1.000 .984 .913
12 1.000 1.000 .991 .938

32

models and compares their accuracy. The basic question is whether the

increased accuracy of the Price model is worth its added complexity. It is

answered affirmatively.

Figure 2.4.1 shows the relationship of the different yield models. The

key underlying assumption is the distinguishability of defects. If the wafer

were examined by an inspector, could each of the individual defects be told

apart? The Poisson and Gaussian models assume distinguishable defects

whereas the Price model assumes the defects have identical appearances.

This assumption determines the form of the probability density function for

the occurrence of defects. For example, consider the total number of ways

m defects can occur in a set of n different chips. For many of the

probabilities that will arise in applications of the yield model, this is the size

of the sample space. If the defccLs are distinguishable, there are nm

different assignments of defects to chips whereas indistinguishable defects

give only

(r+n-1] < n

placements. The different sizes of the sample space give rise to different

probability distributions. Additionally, equations involving terms such as nm

generally are simpler than those involving Ihe more complex combinatorial

formulae. Consequently, the Price models are more complex and difficult to

work with than the Poisson and Gaussian models.

Although they are more complex, the Price models are more realistic.

They agree more closely with empirical evidence [Glas79]. Furthermore, it

is unrealistic to assume that defects of similar physical cause (e.g. two oxide

-, 33

Probability
Dittribution Model
Type Model Characteristics

MULTIPLE
3-step 4-step PROCESSING

CONTINUOUS Poisson Price Price STEPS

SINGLE
Geometric PROCESSING

CONTINUOUS Gaussian Poisson (Price) STEP

SINGLE

Complex PROCESSING
DISCRETE Binomial Distribution STEPI I

Distinguishable Indistinguishable
Defects Defects
Assumption Assumption

4 Figure 2.4.1 - Taxonomy of Yield Models

4

4 - --.mmm m m m~ m m mm~m a- m l~mm~ ,.a . . ,. .

34

pinholes) can be told apart. However, an inspector could tell a metal short

from an oxide pinhole. This supports the distinguishable classes of

indistinguishable defects which underlies the Price model.

a) Distinguishable Defects

Assume each defect is unique and can be differentiated from all other

defects. With M distinguishable defects distributed over N chips, the

probability that any given chip contains exacLly k defects after a single

processing step is

Pr(z-k) j [- (1- N(4.1)

This is a form of the binomial distribution. It can be approximated in

different ways depending on the frequency of defects: rare, occasional or

frequent. The last two cases are of practical interest since, in any large

scale circuit, defects are likely to occur.

1) Occasional defects. If the yield is moderate then equation 4. 1 can be

approximated by a Poisson distribution [Ross76]

So
Pr(z=k) = e-

M.

where so = s the expected value of the random variable z.

A key advanLage of tie PoiLisua approxiuiaLion i., iLU sii iple cxLrsioii Lo

modeling multiple fabrication steps. Since the sum of independent Poisson

random variables also follows a F'oissoii distributioni

35
1"?

Pr(z + z2 + -- + z = k) = e(4.2)

whore sI = 1 + 2 + + \ 1 with Xi = expected value of z1 . For identically

distributed zi.

ke

with so = expected value of zi. This contrasts with the more complex sum of

geometric random variables distribution encountered in the Price modelH" (see section 2.3).

Note that in equation 4.2 it is not necessary to assume (as in the Price

"iodcl) that (.:ach processing slep contributes equally to the probability of

occurrence of defects. All that is necessary is to sum the expected number

of defects in each processing step and use the sum as the parameter in a

Poisson distribution. In contrast, the Price model without this assumption

becomes unwieldy. Equation 2.1 becomes

4 1.. Y= II
i (1+d j)

where di is the expected number of fatal defects introduced by the ith
4

processing step.

2) Frequent defects. For a low yield and M large, equation 4.1 is more

4 accurately approximated by a Gaussian distribution 'Ross'?6]

1 p fk-So '.
Pr(z=k) = vQ cxp , J (3).2

36

where a. = so(1 - 1) is the variance of z.
N

How much more accurate is Lic Gaussian approximation for low but still

realistic yields? First, assume N is large so a" so and equation 4.3

becomes 20 is clearly lower bound on the number of chips per wafer. For

n = 20. r; = so(1 - -) = 0.95s0 and a, = 0.98so so this approximation is
20

highly accurate.

Pr~z~k exp 12

To compute the yield we take k = 0

Y = Pr(z=0) = 1(-4/2 -1 2 (4)

Table 2.4.1 compares yield vs. so for the Gaussian and Poisson

approximations. With low yields (<5%), for a given value of so, the Gaussian

approximation predicts a higher yield than the Poisson model. Since the

Poisson approximation is known to underestimate yields [Glas79], the

Gaussian approximation is indeed more accurate. However, the difference

between the approximations is not large (-22%) even at extremely low yields

(1%). The relationship between yield and area is

YPr(z=0) = --- A0 - 1/ 2 e - '/ 2 (Ago) (4.5)

where so = 1.,V0 defcls per untL Ac per slop wiiich is derived by solving

equation 4.4 for so with Y = 0.20. A i yield corrc:-,)oid Lo As0 o '.6,i '\

= 4.7 unit areas which is larger Lhia will be coInJiCL'w'2d fur a C-hi0 b,..i0iu,,

3?

Table 2.4.1 - Comparison of Gaussian and Poisson Approximations

Yield Gaussian Poisson Gaussian /Pois son

0.01 5.64 4.61 1.223
0.02 4.49 3.91 1.148
0.03 3.83 3.51 1.091
0.04 3.38 3.22 1.050
0.05 3.04 3.00 1.013
0.08 2.77 2.81 0.961
0.07 2.55 2.66 0.962
0.10 2.05 2.30 0.891
0.15 1.53 1.90 0.805

38

block. Consequently, in the range of chip areas under consideration, the

Gaussian approximation is only marginally more accurate than the Poisson

approximation so it will not be used. The Gaussian approximation will not be

further considered.

b) Indistinguishable Defects

Assume all the defects arc identical and can not be told apart. With TVI

indistinguishable defects on a wafer of N chips, there are

(+M-1)

different ways of distributing the defects on the chips. To evaluate Pr(z=k),

Lhe probability that one specific chip contains exactly k defects, note that a

subset of k indistinguishable defects can be chosen in only one way. The

remaining IVI - k defects can be placed on the other N - 1 chips in

j~+M-I-2)

different ways. Hence

N+M~k-2)

Pr(z=k) = M_

for simall values of k and large, increasing valucs of N, Pr' =k) asymtotically

Lp)proachc 'Gla7'79, l'arzGU

witU,

39

Thus a geometric distribution characterizes the defect distribution for a

sil 'le processing step with indistinguishable defects.

Extending this result to multiple classes of defects, we assume that

defects within each class are indistinguishable but two defects in different

classes can be told apart. A different defect class is associated with each

interconnection level. Since the fabrication steps are assumed to be

independent, the total number of defects is the sum of the number of

defects introduced by each step. By the assumption of equal defect

densities at each level, the zi arc identically distributed. Consequently, Z,

Lihe total niumber of defects, Ls the sum of independent, identically

ditributed geometric random variables, and the probability density

functions, Pr(Z=mn), for 3 and 4 classes of defects are:

Pr(z + z2 + z3 = M) --(m+l) (m+2) paqm

Pr(z1 + z2 + z3 + z4 = 11) = -(m 1) (m+2) (m+3) p qm
6

with p = andq= 1 -p.1 + As0

Graphs of Pr(Z=m; A) for the Poisson, 3 and 4 class models are shown in

Figures 2.4.2 - 2.4.4 for different areas.

Comparing the Poisson and Price models, we find that the Poisson

model i lOss ,a.ccuratc as the chip area increases. At unit area, the number

of defects i,, overestimated. Biut for larger areas, the Poisson model

underestimates the number of defects by a considerable amount. In short,

th. ?oison model is accurate only near unit area and for ni 2. Since the

.-...... ...

40

.35

.3te Mode
.2

00

%
*%

OI
.** Po.s...n M.del

7 9

m Nube ofDfet

I lw 2.. * rbbilyo oet
I~o 1. I A

441

-. M

0--

.25

.

2 / 4-e Model

:'" !!0/ ".,.. Poisson Model

Fiur 2.. -. Prbblt o oe

.1

| .05

S0 2 4 6 8
1i 3 5 7 9

m = Number of Defects

* Figure 2.4.3 - Probeblllty of m Defects
(Are. - 2.9 NUA)

[I

4

L 42

35

.3 lit \\
I~

I t

.25 1 Il
I

-I

-4-step Model

15-- --- --- --- -- --- --- --- - -- -- - -- - -- - -- -3-step Model
Poisson Model

.05

0.
6

0 2 4 6 8
1 3 5 7 9

a Number of Defects

figure Z.4.4 - Probability of a Defects
(Area - 3.0 VOL)

K .. 43

area of a wafer scale building block is large, and we would rather make

conservative cstiniates than overly optimistic ones, the Poisson model is

unsuitable for precise defect analysis. It is useful only for order of

inagnitude c Ainiates.

Comparil , the 3 and 4 class Price model, we find that both curves havc

x cry similar shapcs. P'urtlicrntorc, they convergc as n - co, but the 4 class

model shows greater variance. '[ho three class model is only a moderately

good approximation to the four class approximation. Since a 4 level process

is most appropriate for the implementation of wafer scale CHiP machines,

its added complexity will be endured except when it is prohibitively costly.

5. Applications of the Yield Model

In the previous sections we developed a model of the integrated circuit

manufacturing process. The analysis was based on the properties of the

fabrication process. The end result was to characterize the distribution of

imperfections in the fabrication process, and from this model the yield of a

given size chip can be predicted.

This is not, however, our ultimate objective. In this work we are

interested in the analysis of parallel processors. But the processors under

consideration arc fabricated out of silicon with several PEs per chip. So the

modeling of integrated circuit fabrication technolog y is a necessary

prcrcjuiziLc L, parallel processor analysis. The choice of the number of

proccsswii, Jeiints per chip. si.ze of the PEs, etc. depends in part on the

Lechnology out, of which the Pi,;; arc created.

44

In this section, the yield model developed above is applied to the study

of the design of parallel processors. In very large and complex parallel

processing systems, fault tolerance is a desirable (if not mandatory)

property of the system. With the homogeneous structure of CHiP machines,

redundancy is a natural means of achieving fault tolerance. To analyze the

yield of fault tolerant CHiP modules, one must kn., for a chip containing a

fixed number of redundant components, what is the probability that the

number of faulty components does not exceed the number of redundant

ones. This is the yield of the fault tolerant chip. Conversely, a design

oriented version of the above question is how much redundancy is required

to achieve a given yield. Knowledge of this can guide the designer of a

parallel processor in choosing the amount of redundancy within the

processor.

Furthermore, changes in technology impact the design of parallel

processors. The scaling down of device dimensions increases yield with

resulting reduction in cost. Alternatively, scaling can be exploited by using

more powerful and faster PEs on a chip with the same yield. Combinations

of increased PE capacity and better yield are also possible.

There are also tradeoffs between the size of the individual PEs and the

dimensions of Ihe C-HiP laLtice. Which is preferable, a ;small nunber of

complex Pfs or a larger number of .,irnple oni? With respccL Lo yield, this
L

Lradeofl can be quantized through the use of ite yield inod. Tihcsc

questions and others can be quantiLatively answered by the application of

the yield model.

I.

45

a) Recovery Analysis

Given a sect of Np identical PEs fabricated on a chip of area, A, what is

the probability, Nm, that at most m of the PEs are faulty? This is the

recovenj problem. Rm is the probability that at least Np - m of the PEs can

be recovered from the chip. If the chip contains m redundant PEs, Rm is the

yield of the fault tolerant chip. The chip is usable if no more than m of the

PEs are faulty. Otherwise the chip does not contain a sufficient number of

good PEs.

From a tolution to the recovery problem, the mean number of good PEs

per chip is easily calculated. The probability that a chip has exactly m

defective PEs is Rm - RmI. The expected number of good PEs is

Nt I(p- m) (m- ,m) (5.1)
m=0

where R- 1 = 0. This is the average yield of PEs per chip.1

How does a solution to the recovery problem apply to the analysis of

CI-liP processors? CHiP machines are composed of two types of components:

switches and PEs. The recovery problem considers only faults in PEs. But it

will be shown (Chapter 4) that PE faults are the dominant factor in the yield

of a CHiP lattice. Switches are very small and simple. As a result, they have

high yield; there are few faulty switches. On the other hand, PEs are much

larger, and defects are much more likely to occur in PEs than in switches.

Consequently, if the P -,s of a lattice are functional then there is a very high

probability that the entire lattice is functional. Analyzing thc yield of PEs

I j'his probability can also be calcnflated from the binomn di ribution. Our emphasis on

fault tolerant inae.iles makes the above viewpoint (u3ing J?,,) more useful.

t"r

46

provides a very good approximation to the yield of the lattice as a whole.

To solve the recovery problem, note that by the assumption that all

defects are point defects, each defect will disable exactly one PE. A point

defect causes localized circuit damage, so it is impossible for a point defect

to span two or more PEs. Consequently, if the number of defects on the chip

is less than or equal to m, no more than m PEs can be faulty. In addition,

recall that defects are randomly distributed over the wafer surface. It is

possible for a PE to contain multiple defects. In short, the chip may contain

more than m defects but they may be clustered in m (or fewer) PEs. Thus

Rm consists of two terms

Rm - Pr(Z:m; A) +

Pr(Z=i; A) Pr(i defects cluster in m PEs) (5.2)
i=m4l

The distribution of Z is known from the yield model results, and the

clustering probability is derived in appendix one. Different forms of the

clustering probability can be derived depending on the number of classes of

defects. As seen earlier, a four class assumption is the most appropriate

model of the integrated circuit manufacturing process for CHiP machines.

However, the solutions to the clustering probability become increasingly

complex as the number of defect classes increases. Figurc Al. i in 1he

appendix compares the solutions for one, two and three classes of defects

with all defects clustering in four or fewer of 16 PEs. Note that the

probability distrihutions converge aci; the number of defect classes increase.

'le (lifference beLweeu Lhc CUvuL:.j 'or wo aILI t tI.!: i.1 less bhaa the

,ap between tile one and Iwo ca.-..; ,urvc . 't'his jliweIt.Lcs Wat. .a tic '-i

I.

47

four clars solutions will be in even closer agreement. Additionally, the two

and Uree class soluLions differ by only a few percent. As a result, the three

class solution will be accepted as sufficiently accurate; the added

complexity of the four class solution does not justify slight increase in

accuracy.

Equation 5,2 gives the relationship between PE area, number of PEs,

redundancy and yield. It can be used to analyze tradeoffs between these

quantities. To demonstrate the results of this analysis, we will study one

example that will be of considerable use in the design of the wafer scale

CHiP machine. Recall that the definition of the normalized unit area is

tailored to this standard PE. One NUA is defined to be the area that can hold

a 2 x 2 while CHiP lattice of standard PEs with the design rules set to

achieve 20% yield.

Figure 2.5.1 displays the results of applying equation 5.2 to the

standard PE. On the x-axis is the number of PEs in the collection. Each one

of the different curves shows the relationship between recovery probability,

Jim, and the total number of PEs, Np, for a fixed number of redundant PEs,

in. Exactly in of the Np PEs are redundant. The individual curves depict

R0 , R1 , , ts. This information is also displayed in Tables 2.5. 1 and 2.5.2.

The lowest of the curves, R0, is a standard yield curve. There is no

redundancy so a single defect renders the chip unusable. The shape of R0 is

similar to Figure 2.1t. Note the point Np = 4 and RI = .26. One normalized

unit area holds a 2 x 2 lattice and has yield .20. However, the lattice

contains both L¢witches and Pl'Es. Sonie of the defects within a lattice will fall

in PEs and some in switches. With the recovery curve, we are concerned only

(

48

1. .. 'S~~% -. 4?.'k -9 9. 1 '3 S "'3S "% O

..., o f -, N.. . r-

,-...• %., .

0, ",."
'3\.

-~ . _
, ..

f2igu Ri

5 9 133 7 11 15
Np = Nuber of Processors

Vigure 3.5.1 - leoisry Probability vm. lulbor
of Plrooll lilt

49

Table 2.5. 1 - Recovery Probability (0-4 Redundant PEs)

Reocovery Probability

number of Redundant PEs
Pus 0 1 2 3 4

1 .686 1.000 1.000 1.000 1.000
2 .485 .904 1.000 1.000 1.000
3 .353 .776 .968 1.000 1.000
4 .263 .650 .904 .989 1.000
5 .200 .540 .822 .958 .996
6 .155 .447 .733 .910 .981
7 .122 .371 .647 .850 .955
8 .097 .309 .567 .783 .916
9 .078 .259 .495 .714 .869
10 .064 .218 .432 .647 .816
-1 .053 .184 .377 .583 .760
12 .044 .157 .329 .525 .704
i3 .037 .134 .288 .471 .648
ii .031 .115 .253 .422 .595
1Q .026 .099 .222 .379 .545
16 .022 .086 .196 .340 .498

50

Table 2.5.2 - Recovery Probability (5-8 Redundant PEs)

Recovery Probability

number of Redundant PEs
PEs 5 6 7 8

1 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000
4 1.000 1.000 1.000 1.000
5 1.000 1.000 1.000 1.000
6 .998 1.000 1.000 1.000
7 .991 .999 1.000 1.000
8 .977 .996 .999 1.000
9 .953 .988 .998 1.000

10 .922 .973 .993 .996
I I .883 .953 .984 .996
12 .840 .926 .971 .990
13 .1793 .893 .952 .981
14 .745 .857 .929 .969
15 .697 .817 .901 .952
16 .649 .776 .870 .931

51

with the four PEs - not with the switches. Because of this the yield of four

PEs is higher than the yield of a 2 x 2 lattice.

The size of each PE is fixed so as the number of processors, Np,

increases, the area occupied by the PEs increases proportionately. Since

defects are distributed randomly, more PEs means a larger area to be "hit"

by one of the defects. The R0 decreases rapidly reflecting the fact that the

yield declines as the 4th power of the area. For larger m, the decline is less

steep. Redundancy moderates the effect of defects.

Figure 2.5.1 can be used in a variety of ways to analyze the design of

parallel processors composed of the "standard" processing element. For

example, suppose we want to produce chips containing a set number of

functional PEs, but a yield higher than the Rio curve is required. In other

words, simply patterning the required number of PEs ol the chip does not

give high enough yield. Adding redundant PEs to the chip will increase its

yield. Exactly how much redundancy is required to achieve the target yield?

The answer is found in Figure 2.5. 1.

For example, considering fabricating a chip that contains four good

PEs. (This is not a randomly chosen example. CHiP lattices with four PEs

will be used as basic units out of which wafer scale CliP machines will be

built.) Let the target yield be '75%. Simply patterning four PEs per chip

results in only 26% yield (Table 2.5.1). The datapoints from Figure 2.5.1

corresponding to four Ps (Nil= and nt = 0; Np - band in =1; ... Np -2

aid in = 83) arc summarized iii Figure .2.5.2 and Table 2.,).3. 73% of thu Lime

four good PI'b can be found in a collection of six Pl'ls. AL least four PIs arc

functional out. ef seven 783% of the time. 'This sliows that the LargeL yield is

I

52

achieved by providing 2 - 3 redundant PEs.

From Figure 2.5.2 it can bc seen that adding a single redundant PE

increases recovery from 26% t b7%. This is a surprising result. Why?

Adding an additional PE increases the chip area. There is more area to be

"hit" by a randomly distributed defect. One might naively suppose that the

addition of a redundant PE would be counterbalanced by the increase in

chip area. The net result would be little or no increase in recovery. The

reason this does not happen can be traced back to the characteristics of the

cumulative probability distribution of the number of defects in a given area.

It was noted (see section 3 - Probability Density Function) that for

moderately large areas, even though there may be a large probability of at

least one defect, the number of defects is likely to be small. For example, in

one normalized unit area there is atn 80% chance of there being at least one

defect. However, the mean number of defects is less than two (Table 2.2.1).

It takes only a small number of redundant I',s to absorb the few defects

Ihat arc likely to occur. Thus a liLLIc redundancy provides a large increase

in recovery.

b) Fault Tolerant CIi' Modules

One aspect of this work is to consider the desig-n of CI-Li' modules -

clips containing a small Cllii];tticc. Due Lo pitout const:rainL:, each

module can contain only a .;ti ali um-nber of prccusing ulienit-,. The

individual modules can be packai;ed and assembled to form larger CI-11

machines. AltcrnaLely, the modtules can rcmtamii n the wafer and be

connecLed together to foriji a walc scale machine.

A 53

.8

.9

.3

*.2

0.6

4: 6 8 151
5

N.ube f 0

Fiue252 Rcvr0Poaiiyfrfu

PIS .n4 I

54

Table 2.5.3 - Recovery of 4 PEs from N PEs

N = number relative prob-2 4 number of
of PEs area good PEs redundant PEs

4 1.00 .2G3 0
. .) .540 i

7' 1.5!.! .78t3 3

13 2.,,, .869
9 ,. ,) •,,.

:o W97 IG
..7,, .9131

,2 3.00 .990 13

F

55

The results of the previous section show that redundancy can cause

large increases in yield. This suggests that redundancy could be a cosL

c(AectjVc app;:o, h to rnanufacturing Cl-lill modules. A fault tolerant CAiP

m,_odule could be designed that contains redundant PEs. The switch lattIce

can be used to route around the faulty I'Es and connect together the

functional ones. Faults, of course, can also occur in switches so redundant

switches are also required.

Three problems in the design of fault tolerant CHiP modules must be

solved:

* Choose the number of redundant PEs.

* Choose the switch lattice.

o Configure the lattice to avoid defects, the mapping problem,

The first problem can be solved using the recovery analysis results. As for

the second, in Chapter 4 it will be shown that switches are quite small so

they have very high yield. Doubling the corridor width of the switch lattice

provides 100% switch redundancy. This allows virtually all switch faults to be

absorbed. Consequently, faulty switches have virtually no effect on the yield

Sof fault tolerant CliP modules. The recovery analysis results (which

considered only P'Es) are an Lipper bound onl the recovery of CUldl lattices

containing both l's and switchcu. However, this upper bound is a very close

anproxitnatio[to ucLual laLicU r.covery.

Finally, Lhc lattice must L,. configured to niask the presence of defects.

K consider rccovering a 2 x 2 ,l, ii LALitcc Fl.'igure 2.5.3) from a chip

56

0 0 0 0 0

oDo~o

0 0 0 0 0

0 0 0 0 0

Figure 2.5.3 - 2 x 2 Virtual Lattice
(Datapaths Not Shown)

I 57

0 0 00 0o0o 0 00 0

Fig-are 2.5.4 - 3 x 2 Physical Lattice
(Datapaths Not Shown)

58

containing a 3 x 2 double corridor lattice (Figure 2.5.4). The 3 x 2 lattice

that is actually patterned in silicon is termed the physical lattice. Switches

in the physical lattice will be set so that it emulates a fault free 2 x 2 lattice,

the virtual lattice. We say that the virtual lattice is mapped into the physical

lattice. The configured physical lattice could be used in place of the virtual

lattice or vice versa. An observer- of the input / output behavior of a fault

tolerant CHiP module can not detect the presence or location of the faulty

components.

There are two subtasks in finding a mapping of the virtual lattice into

the physical lattice:

* Assign PEs and switches in the physical lattice to their counterparts in

the virtual lattice.

* Define a one-to-one correspondence between datapaths in the virtual

lattice and paths in the physical lattice.

The process will be explained through the example of mapping a 2 x 2 virtual

lattice into a 3 x 2 physical lattice (Figures 2.5.3 and 2.5.4). The four PEs of

the virtual lattice can be assigned to functional PEs in the physical lattice as

shown in Figure 2.5.5. The 12 .witches of the virtual lattice that arc

connected to ports (shaded in Figure 2.5.5a) can be assigned as in Figure

.. 5b. The datapaths between a lort and a ,.-owitch in the virtual Iattice

become paLths In lhc physical lattice as shown. Tim right i)urL of PE A is

separated from iLs switch by si'x intervening switches. 'l'ie coUIplULc

mapping is shown in Figure 2.5.6.

59

01

00El0E0

0o0 0 0o

000000

0- 0
0

Figure 2.5.5 - Example of a Partial Mapping

60

0 0

0 0

Figure 2.5.6 -Complete Mapping of the Virtual Lattice
Into the Physical Lattice

61

c) Optimum Lattice Size

An examination of Table 2.5.3 shows that chip yield approaches one as

the number of redundant PEs increases. Arbitrarily high yield can be

achieved by providing enough extra PEs. However, with more PEs per chip

the area of the chip increases. With larger area, fewer chips can be

fabricated on a single wafer. Since the cost of processing a wafer is

independent of the number of chips it holds, fewer chips per wafer leads to

higher cost per chip. Unless the gain in recovery makes up for the area

increase, redundancy could result in higher chip cost.

What is the level of redundancy that optimizes the number of good

chips per wafer? Consider once again recovering four PEs from a chip.

Using the terminology of recovery analysis, let there be Np PEs per chip. Np

- 4- of these are redundant, and lNp-4 is the yield of the fault tolerant chips.

The number of chips per wafer is proportional to the chip area. Since PEs

are of fixed size, area increases linearly with the number of PLEs. Hence, the

number of chips per wafer is proportional to I / Np. Consequently,

maximizing RNp-,4 / Np determines the value of Np that also maximizes the

number of good chips per wafer. In fact, 4 RNp-4 / Np is the fraction of PEs

on the wafer that arc actually used. RNp_ 4 of the chips are good. On these

good chips, 4 / Np of the PE's are used. 4 RNp-4 / Np is the PE utiization.

Table 2.5.4. shows the PE utilization for the recovery of four P's from a

chip containing Np Pl-s. With Np := 4, 100% of the PEs on good chips arc used

but only I =.16.3/U of the clip), are good. Addinig one redundant PE o're

62

Table 2.5.4 - Optimum Lattice Size for the
Recovery of Four PEs

Recovery of 4 PEs

Np = number Gain with
of PEs /chip R(%) 4R/Np FT()

4 26.3 .263 0.0
5 56.8 .456 73.3
6 77.2 .516 95.6
7 88.5 .504 92.1
8 91.6 .460 46.0

Table 2.5.5 - Optimum Lattice Size to Maximize
Number of Good Chips Per Wafer

PEs Optimum
Recovered Lattice Redundancy Gain with

(Nv) Size (Np) (%) R (%) FT (%)

1 1 0.0 68.6 0.0
2 3 50.0 80.4 10.3
3 4 33.3 68.0 44.1
4 6 50.0 77.2 95.6
5 a 60.0 78.3 144.8
6 10 66.7 81.6 215.9
7 12 71.4 64.0 301.6
8 14 75.0 65.7 404.7

63

than doubles chip yield. There is a 73% (= .456 / .263 1) gain in PE

utilization. The increase in chip yield, R, - R0 , more than makes up for the

increase in chip area. With two redundant PEs, utilization increases to 96%

(.516 / .263 - 1). Adding additional redundancy reduces utilization. So Np

0 is the opLtinum number of PEs per chip for maximizing the number of

chips per wafer that contain four good PEs.

Why is six the optimum lattice size? The optimum is reached when the

gain in recovery is exactly counterbalanced by the area increase of the chip.

Examining Figure 2.5.2 it can be seen that six PEs is at the knee of the

curve. Beyond this point the slope of the curve is less than one; the

marginal increase in the recovery probability is less than 0.1 for each

additional redundant PE. Before this point the slope exceed one; additional

redundancy increases recovery by more than 0.1.

How many more good chips per wafer are there? It will be shown

(Chapter 5) that a standard PE occupies a 1.75 mm x 1.75 mm region of

silicon. A chip containing four PEs is therefore of size 3.5 mm x 3.5 mm.

(Tlhis estimate ignores the area occupied by bonding pads and their drivers.)

The nutmber of square chips with edge length e that can be packed onto a

circular wafer of diameter D is [Phis79]

ui)~ D-r] 1.77-D_

4cC

A 4" wafer can hold 647 four PE chips. At 3.3% yield a wafer has 170 good

chips. A six PE chip has 50% lUwoe area. Assume that it occupies a square

vvith edge 3.5 I = 4.29 nun. , .:" holds only 399 of these larger chips. But

rndcniicy i-.u ,iiC .:,J;ud L.c, icd i.L. 77,/ , c!ti", in 500 -,ood chip., pcr
t,

q .

864

wafer. Thus redundancy has resulted in an additional 308 - 170 138 good

chips per wafer - an 81% increase. The fixed cost of processing a wafer is

divided between more chips. In short,

redundancy can substantially decrease the manufacturing cost of chips

containing several processing elements.

The optimum lattice size for recovering Nv PEs per chip with Nv ranging

from one to eight is shown in 'Fable 2.5.5 and Figure 2.5.7. In every case

except for Nv = 1, redundancy can increase the PE utilization and

subsequently reduce cost. The gains in utilization increase with Nv. This is

because the baseline for the comparison (no fault tolerance) is a standard

yield curve. As shown earlier, yield decreases rapidly as a function of area

(Figure 2.2.1). So as Nv increases, the baseline utilization drops sharply.

Additionally, the percentage redundancy required at the optimum

lattice size increases as a function of Nv. With lattices occupying a large

area, a higher fraction of the PEs must be redundant. With large lattices,

there is a decline in the marginal increase in redundancy of each extra PE

added. More redundant PEs are required to provide the same level of

protection against defects.

d) Design Analysis

By combining the yield model with recovery analysis, the

inLerrelationships between PE size, lattice dimensioni, redundancy and yield

arc known. 'l'radnofTs between tLh':u quhlLLieS e ai be JS;CSSCLI. SiTC" L0

;JnhlUfacLuriflgi, cost of a chip de,)ctid:; oni its yield. Lhese resultS sh1ow how

variuuj facLor; of Ulhe parallel prLWcU.uI' dc;iin uK.:.L IL.' cost.

..

4 65

14

121

,10.

8.,

.4

2

* 0
0 2 4 6 8

13 5 7
Nuaber of Virtual PEs

Figure 2.5.7 - Optimuu Lattie Size to Eauisize
luaber of Good Chips Per Tater

S- --- -- --- - - - - - - - - - - - - - -

66

In the previous sections, the effect of redundancy on yield was studied.

However, the methodology of the yield model and recovery analysis can be

used to investigate a wide variety of design tradeoffs. The primary

advantage of this methodology is that it provides quantitative analysis. We

consider one example below.

The state of the art of integrated circuit manufacturing is not static.

The dimensions of individual devices continue to shrink. Given a design of a

parallel processor which is constructed from chips containing several PEs,

what is the effect of advances in technology on the machine? How will the

yields of the individual chips improve? How much redundancy is required

with smaller PEs? Figures 2.5.8 and 2.5.9 display the recovery probabilities

for device area scaled by a factor of one half and one quarter respectively.

We assume the same standard PE is produced only at doubled and

quadrupled density.

Let us reconsider the example proposed in section A - manufacturing a

chip with four good PEs at 75% yield. With device area shrunk by a factor of

two, only one instead of two redu1 dant PEs are required. The recovery of

four good PEs from a set of six jumps from 75' Itr 95%. With quadrupled

density, no redundancy is requi,'t:d. The yield a chip cootaining four

standard PEs is about 70%.

67

.4 t.~-

13.-

7G. 111

.8 Nube f .

719tO 2--6 ff~c of calns a Recver

scal fat. .

68

.7

.9

Ems

ad 0 .saw ?t

. 4+ * 1 3U M A 31 PRO

.3

.2

0.

1 5 9 13
3 7 11 1

R RECOVERY PROBABILITY

Figure 2.5.9 - Effect of Scaling on Recovery
(Scale Factor =0.25)

69

Instead of exploiting the increase in density to manufacturc the same

design morecccconoiniceally, it can also be used to produce a more powerful

i :lneat Liw,- .-aiac uo-L. 1'ot cxamnple, with doubled density, Liiifc P1,s per

ciiip can be f.~brieaLcd with abut thec samec yield as four Pk~s per chip AL U tr;

prcvious don~ty. Assuming pinout constraints are satisfied, Wie Iitice

dimensionb cdli be increased by a factor of 2.25 without izicrcasmng the

number of chips in the machine and for approximately the same cost.

This methodology can be used to investigate many other Lradeofis in

the design of a parallel processor. The effiect of technological advat~ces is

but one such ex,-am-ple. Many design decisions rcflcct thiemselves in termis of

area or yield. This lends considerable generality '-o the methodology

presented here.

Lq

70

CHAPTER 3

TWO LEVEL HIERARCHY

In this chapter, we return to the problem of designing a wafer scale

CHiP processor. The goal is to fabricate a large-scale parallel processor on a

single wafer of silicon. There are many problems to be considered in the

design of such a system: processing element design, testing, PE to PE

communication, power consumption, etc. In this section, we consider the

problem of structuring a wafer containing individual switches and

processing elements into a CHiP processor.

As shown in Chapter 1, structuring is the key problem in the

implementation of any wafer scale system. Since the semiconductor

manufacturing process is imperfect, each wafer contains many defective

PEs and some defective switches. These must be bypassed so their presence

is masked. Only the good processing elements and switches are connected

together. Furthermore, the good components must be connected to form a

CHiP lattice. The structured wafer emulates a smaller but fully functional

C-iP lattice.

This chapter synthesizes prcviously presented ideas of wafer

structuring by column exclusion (Chapter 1) and of fault tolerant CHiP

modules (Chapter 2). A two level decomposition of the structuring problem

71

is proposed. The basic idea to divide the wafer into a number of separate

building blocks. Each building block contains sufficiently many redundant

components to insure that a smaller functional lattice exists within almost

every block. Virtually every block on the wafer will contribute a small

subpart to the overall structure; the blocks have high yield. In addition, the

switch lattice of the blocks provides a substantial amount of wiring

bandwidth through the block. A very large number of independent wiring

paths can pass through from one side of the block to the other.

Recall that the column exclusion strategy for structuring has two

requirements: high yield and wire around capability. Redundancy within the

building block insures high yield, and the switch lattice of the building block

provides the wire around capability. As a result, building blocks modules are

suitable for using the column exclusion strategy for wafer structuring. This

makes CHiP machines a natural choice for wafer scale implementation.

Before explaining the two level decomposition further, the structuring

problem and its global solution are examined. This will provide the

motivation for the decomposition of the wafer into building blocks.

4 1. The Structuring Problem

We are given a wafer with a very large lattice patterned on it. Due to

circuit defects, every wafer will contain both faulty PEs and faulty switches.

4 It is assumed that the yield model and recovery analysis of Chapter 2 apply

to the lattice, and that the lattice has been completely tested. (This is a

difficult problem by itself. It is considered in detail in Chapter 6.) The

4 status, good/bad, of every component in the lattice is known. All functional

.

72

components have been found, and no dysfunctional components have been

incorrectly identified as good.

The goal is to structure the wafer so it behaves as a smaller but fully

functional lattice. The switch lattice is used to bypass faulty components. An

observer of the input/output behavior of the structured wafer can not

detect the presence, number or location of the faults. Additionally, the

wafer is structured so that it emulates a virtual lattice (see Chapter 2). The

behavior of the structured wafer and the virtual lattice are identical.

For example, Figure 3.1.1 shows one method of structuring a wafer. For

simplicity the switches are not shown. The wafer contains a lattice of

dimension 6 PEs by 5 PEs with ten of the PEs defective. A 4 x 4 virtual

lattice (Figure 3.1.2) is mapped onto the wafer. The numbering of the PEs

shows the correspondence between elements of the structured wafer and

the virtual lattice. The logical structure of the virtual lattice and the

structured wafer are the same since their components are connected in

identical topologies. The structured wafer could be used in place of the

virtual lattice or vice versa.

There are two subproblems to the structuring problem. The first is to

specify the lattice structure that is patterned on the wafer. Secondly, an

algorithm for structuring the wafer into a fault-free virtual lattice must be

specified.

The designer has complete freedom in choosing the lattice parameters:

PE and switch redundancy, corridor width, switch degree, crossover

capability, datapath width, etc. As in the fault tolerant CHiP modules

previously discussed (Chapter 2), increased wiring bandwidth must bc

73

63 t4 87

4 Figure 3.1.1 - Example of a Structured Water -
4 x 4 Virt6ual Lattice in a 0 x 5 Lattice

74

Figure 3.1.2 -4 x 4 Virtual Lattice Which Is
Functionally Equivalent to the Structured Wafer

75

provided to route around faulty components. This additional wiring

capability can be implemented with a combination of extra switch corridors,

additional crossover capability and increased switch degree. The goal is to

provide sufficient additional wiring bandwidth to be able to replace faulty

components and also to route around the defects.

The flexibility gained by the additional wiring bandwidth within the

lattice is not without its cost. Extra switches or additional switch complexity

are overhead that is required for fault tolerant reconfiguration. This

overhead consumes wafer area which could be occupied by processing

elements. Perhaps more importantly, it also adversely effects performance

by increasing the number of switching levels between PEs. Every extra

switch a signal must traverse introduces additional impedance and

capacitance. This increases the time of flight of the signal and reduces the

speed with which PEs can communicate. Consequently, one design objective

is to minimize switching overhead while still insuring the reconfigurability of

the wafer in the presence of faults. The choice of lattice parameters will be

deferred until Chapter 4 on "Building Block Design." This chapter

concentrates on the second goal.

An algorithm must be specified for performing the structuring. The

input to the algorithm is the status, good/bad, of all the components on the

wafer. The algorithm must compute all switch settings necessary to

structure the wafer into a CHiP processor (i.e. the virtual lattice). There

are two aspects to this problem: virtual lattice selection and mapping the

virtual lattice onto the wafer. Given a wafer (with faults, of course), the

dimensions of the virtual lattice to be emulated must be decided upon.

1

76

After choosing the virtual lattice size, it must be mapped onto the wafer (see

Chapter 2): the virtual switches and PEs are associated with their

counterparts on the wafer, and the datapaths of the virtual lattice are

mapped into paths of switches. First, consider perhaps the simplest

algorithm for structuring the wafer.

2. Global Strategy

In the global strategy, the wafer is considered to be a single, continuous

lattice. The choice of a virtual lattice and the mapping problem are applied

to the wafer as a whole. Thus the name of the approach - the algorithms are

applied globally to the entire wafer. From the wafer, a single large virtual

lattice is extracted, and it is mapped onto the entire wafer surface. The

virtual lattice is mapped onto the wafer just as in the fault tolerant CHiP

modules (Chapter 2). Figure 3.1.1 depicts an example of a global

structuring.

Several problems are encountered with this approach. First, two logical

neighbors in the virtual lattice are not necessarily in nearby locations on the

wafer. They may be separated by long distances. This results in very long

paths between PEs. Figure 3.1.1 depicts an example of this for a small

lattice. A path between PEs, instead of going to an adjacent neighbor, may

have to route around several intervening PEs. With the much larger lattices

(e.g. 30 PEs by 30 PEs) that can be fabricated with current technology on a

4" wafer, very long path lengths can result. This causes serious signal

propagation delays. Furthermore, due to the pipelined nature of the

computations performed, a ClfiP machine is no faster than its slowest link.

A single long path reduces the performance of the entire machine.

77

As a result, it is desirable to minimize the maximum path length in a

mapping. This is difficult in general to achieve for two reasons. First, the

mapping problem for the whole wafer is by itself computationally difficult.

Attempting a simultaneous minimization over all possible mappings is not

practical. Second, even if a minimax path length mapping is obtained, there

is no guarantee that it will be acceptably short. The minimax path length

for the global structuring may be so long that it seriously impairs machine

performance. A global solution to the structuring problem may inherently

lead to unacceptably long path lengths.

Second, given the selection of a virtual lattice, consider the problem of

mapping the virtual lattice onto the wafer. The number of possibilities for

the mapping between the virtual lattice and lattice patterned on the wafer

grows exponentially with the total number of components. Since a wafer can

hold a very large lattice, exhaustive search techniques for finding a mapping

are not practical.

The mapping problem is an instance of the subgraph homeomorphism

problem [Gare79, LaPa78a, LaPa78b]. No known polynomial algorithm exits

for the mapping problem. Furthermore, the global strategy gives rise to a

very large instance of the mapping problem. A 30 PE by 30 PE double

corridor lattice (which is feasible to fabricate on a single wafer - see

Chapter 5) contains over 20,000 switches and PEs. Even a polynomial time

algorithm may not be computationally tractable on problem instances of

this magnitude.

In summary, the global approach leads to a computationally intractable

structuring problem combined with potentially poor performance of the

V

78

resulting CHiP processor. What is needed is a means of reducing the size of

the mapping problem and placing a limit on the minimax path length of any

mapping. In the following section, a divide and conquer approach, the two

level decomposition, is proposed which achieves these objectives.

3. Two Level Decomposition

Rather than trying to structure the wafer as a whole, the idea of the two

level decomposition is to divide the wafer into logical pieces. A virtual lattice

is mapped into each of thcse pieces, and the individual solutions are

composed to form a larger CHiP lattice. The organization of the wafer is

divided into two components: the individual pieces and their composition

which forms the wafer scale CHiP processor. There is a two level hierarchy

within the processor - the individual pieces are the components out of which

the wafer scale machine is built. This division of the problem into small

pieces leads to a computationally tractable divide and conquer approach to

the structuring problem.

Each of the individual pieces is a building block of the wafer scale

machine. From each block we will extract a lattice of fixed size. For the

blocks proposed in the following chapter, a 2 x 2 lattice is extracted. This

eliminates the problem of choosing the dimensions of the virtual lattice (at

the cost of sometimes underutilizing the good components of the block). All

blocks yield the same size lattice regardless of how many functional PEs and

switches they contain. More importantly, the uniformity of the virtual lattice

size makes it easy to compose the individual lattices. Each block

contributes a fixed size piece to the overall machine. Each of the pieces

connects to its four neighbors in a simple and regular manner (Figure 3.3. 1).

79

In contrast, if blocks contribute virtual lattices of different sizes (see Figure

3.3.2), this introduces difficult problems of matching the pieces. Simplicity

is a key to success.

Figure 3.3.3 depicts an example of structuring with a two level

hierarchy. The faulty or simply unused processing elements are marked

with Xs. A 6 x 4 lattice is patterned on the wafer. (For simplicity, switches

are not shown. The structuring of the switches is performed similarly to the

structuring of the PEs.) In the first level of the hierarchy, the wafer is

divided into four building blocks each containing a 3 x 2 lattice. A 2 x 2

virtual lattice is mapped into each of these blocks. The individual 2 x 2

lattices are in turn connected together to form a 4 x 4 array of processors

on the wafer surface. The structured wafer is functionally equivalent to the 4

X 4 lattice in Figure 3.1.2.

In this particular example, no building block has more than two faulty

processing elements so a virtual lattice can be mapped into every block. In

practice, some blocks may not contain enough functional components to

host a virtual lattice - the block is considered faulty. The random nature of

defects makes it impossible to completely safeguard against this possibility.

4 The column exclusion strategy is used to deal with faulty blocks. Wherever a

faulty block occurs, the entire column (or row) containing that block is

excluded. In order to efficiently implement column exclusion, blocks must

* have high yield and wire around capability. These problems are discussed inr
Chapter 4 on Building Block Des gn.

The advantages of the two level composition are twofold. First, a bound

is placed on the maximum path length in the lattice. The mappings

'4 •

80

Figure 3.3.1 - Composition of Lattices of Identical Size

r

81

Figure 3.3.2 - Composition of Lattices of * onuniforni Size

82

9 14

r~hur. 2.33 - trur'.urin, Witt- thr ThoT-vc: irrr-

-A12i 886 WAFER SCALE INTEGRATION OF PARALLEL PROCESSORS(U) 2/3
PURDUE UNIV LAFAYETTE IN DEPT OF COMPUTER SCIENCES
K S H4EDLUND NOV 82 CSD-TR-41l N8@814-80-K-8816

UNCLASSIFIED F/G 9/2 N

smhhhhhhhhhiI
smhhhhhhhhhhh
EhhhhhhhhhhhhI
smhhhhhhhhhhh
EhhhhhhhhhhhhE
EhhhohhohhhhhI

9 .0

ju 11 .2
JU

u ul

MICROCOPY RESOLUTION TEST CHART
NATIONAL. BUREAU Of STANOARN - 103 A

83

performed on the individual blocks are contained totally within the block.

Any two PEs in the virtual lattice mapped into a block are connected by a

path which does not go outside the block. This limits the maximum length

of any path and establishes an upper bound on the processor to processor

communication time.

Second, the problem of structuring the wafer is made computationally

tractable. The one very large instance of the mapping problem that is

generate by the global strategy is divided into many small instances. Each of

the building blocks is small, and the virtual lattice can be mapped onto it by

brute force methods. Since the same size virtual lattice is mapped into each

block, individual solutions are easily composed. In short, the structuring

problem is made computationally tractable by a divide and conquer

approach.

The primary disadvantage of the two level decomposition is that fewer

good PEs are usqd than in the global strategy. By extracting a fixed size

lattice from each block there will be functional but unused PEs on the wafer.

Many of the blocks on the wafer will have more good PEs than are used in

the virtual lattice. These extra PEs will not be utilized now. Additionally, no

PEs in the excluded columns are used.

Area is clearly sacrificed in the two level hierarchy. But the commodity

in greatest supply in a wafer scale system is area. The two level hierarchy

trades area for performance and simplicity of structuring.

Additionally, the good but unused PEs can be held in reserve for future

use. During the lifetime of the wafer scale CHiP processor, if a PE fails, an

unused PE can be switched in to take its place (see section 7.5a). This

.
: t °

.: _ S :
'

. p ' • s - .

84

requires only a local modification to the affected building block. Thus even

after manufacturing is complete, the wafer scale CHiP processor has

considerable fault tolerance.

I"

io.
4

85

CHAPTER 4

BUILDING BLOCK DESIGN

This section considers the design of a building block of a wafer scale

processor. A building block implements the first level of the two level

hierarchy. Each functional block is configured into a virtual lattice. This

mapping is performed as with fault tolerant CHiP modules (see section

2.6b). The wafer has patterned on it a grid of blocks typically 8 x 8 to 10 x

10 in size which is structured by column exclusion - wherever there is a

faulty block, the entire column containing that block is excluded from the

grid. To be practical, the column exclusion strategy has two requirements:

high block yield and the capability to wire around unused columns of blocks.

These requirements are examined in detail and a quantitative evaluation is

made.

Several important design choices must be made for building blocks. In

order to provide high block yield necessary for column exclusion, fault

tolerance is an essential characteristic of the building block. The amount of

redundancy within a block is one of the major design choices, and it is

dependent on the yield of the individual processing elements. Since yield is

directly related to area, the size of the CHiP processing elements must be

known. To estimate their area, the intended primary application of CHiP

'i .41'

-86

processors, systolic algorithms, dictates the minimum functional

requirements of a processing element. From this, a high level floor plan of a

processing element is proposed. The floor plan combined with the sizes of

individual register, ALU and control cells gives a rough estimate of the area

of the processing element without actually designing the PE in detail.

Once the area of a PE is known, our previously developed technique of

recovery analysis is used to determine the lattice dimensions of a building

block. After a similar consideration of switch design and estimating switch

yield, a fault tolerant switch lattice for the building block is designed.

1. Block Requirements

a) Block Yield

With the column exclusion strategy, every faulty block causes the loss

of an entire column of blocks. There is a multiplier effect associated with

faulty blocks. (Once again, a faulty block does not have to be completely

dysfunctional, but it is a block which due to faults does not contain an

embedded virtual lattice.) As a result, very few bad blocks can be allowed.

Otherwise a large percentage of the wafer will be unused.

What is the required block yield? To estimate this, assume a wafer

contains an 8 x 8 grid of blocks. (In Chapter 5 on the Wafer Scale CHiP

Processor, it will be shown that this is a reasonable and somewhat

conservative grid size.) For any given block yield, p, we can compute the

6L probability distribution of the number of faulty blocks in the 64 block grid.

Since defects on the wafer are randomly distributed, the probability of the

individual blocks being good are independent events. The status of a block is

87

either functional or faulty, so the probability distribution of good and bad

blocks is a binomial random variable. Pr(F = i), the probability of exactly i of

the 64 blocks being faulty, is

Pr(F = i) = RI (1-p)' p64"i

To estimate the number of blocks left after column exclusion, we

assume that i faulty blocks eliminate i columns (or rows) from the grid.

(Note that it is certainly possible for two or more defective blocks to fall in

the same column. This results in only one column not two being eliminated.

This more detailed analysis of column exclusion is found in Chapter 5. It.

K differs from the following estimate by only about 5%.)

Table 4.1.1 shows the results of this analysis for different block yields.

Because of the multiplying effect of faulty blocks, the grid size obtainable is

highly sensitive to the block yield. Even if 95% of the blocks are good, this

still results in the loss of a large portion of the wafer; over 40% of the wafers

use less than two thirds of the grid. Even with 97% block yield, 25% of the

wafers will use only about two thirds of the blocks, and only 14% of the time

will the all blocks be functional. This shows that even a small percentage of

defective blocks causes a large reduction in the size of the grid after column

exclusion.

Block yields of 98% and 99% show significant improvement. They are
! compared in more detail in Table 4.1.2. With 99% yield, over half of the

wafers are fully functional, and with 90% yield over one quarter have no bad

blocks. The expected number of usable blocks is 54.0 for 98% yield and 59.1

for 99%. This relatively small difference results form the fact that with 99%

88

Table 4.1.1 - Effect of Block Yield on Grid Size
(Worst Case)

number of resulting block yield
faulty blocks grid size 0.95 0.97 .0.98 0.99

0 8 x 8 .0375 .142 .274 .526
1 8 x 7 .126 .287 .358 .340
2 7 x 7 .210 .275 .230 .108
3 7 x 6 .228 .175 .0972 .0226
4 6 x 6 .183 .0828 .0303 .0040

Table 4.1.2 - Comparison of 98. and 99X Block Yield

block yield = 0.98 block yield = 0.99

cumulative cumulative resulting X of
prob prob prob prob grid size grid used

.274 .274 .526 .526 8 x 8 100%.358 .633 .340 .865 8 x 7 87.5%

.230 .863 .108 .973 7 x 7 76.6%

.0972 .961 .0226 .996 7 x 6 65.6%

.0303 .991 .0040 1.000 6 x 6 56.3%

"

89

yield, few lattices are smaller than 7 x 7. As a result, the 98% case receives

a much larger contribution to its expected value from the 7 x 7 and 7 x 6

grids. This makes up for its smaller contributions from the 8 x 8 and 8 x 7

grids.

Although the expected number of usable blocks is similar, there are

twice as many completely functional wafers with 99% yield than with 98%

yield. This is important since a fully functional wafer enjoys a substantial

performance gain over wafers with one or more faults. Excluding a column

introduces a performance penalty. When a column is excluded, the two

adjoining columns must be connected together. The length of wire (and the

, number of intervening switching levels) to implement this connection is

substantially longer than if the columns are adjacent. The connecting wires

must traverse at least the entire width of a column whereas adjacent

columns are separated by very short distances. This longer wire length

increases the signal propagation time. Inter-PE communication speed is

decreased, and system speed goes down. Consequently, it is desirable to

have wafers with no faulty blocks even though redundancy must be

increased to achieve the higher block yield. To achieve this

° 99.0% or better yield is required for the building block.

b) Wire Around Capability

*1 When a column is excluded, the two adjacent columns must be

connected together. To accomplish this, the switches and datapaths in the

unused blocks are used to make the required connections. The PEs in the

blocks are not used but the functional switches provide the wiring bandwidth

90

to connect together the two adjacent columns. Thus the "wire around"

requirement becomes a "wire through" capability via the CHiP switch lattice.

Figure 4. 1.1 depicts an example of wire through.

If each block emulates an N x N virtual lattice with corridor width w, wN

+ 1 connections must be made. Each one of these requires a path from one

side of the block to the opposite side. Since either rows or columns may be

eliminated, any block must be able to provide the needed paths between

both its East and West sides and between its North and South sides. Figure

4.1.1 shows the five connections that must be made for a 2 x 2 single

corridor lattice.

Switches and datapaths are subject to failure just as processing

elements are. Switch redundancy within each block is required so that wire

through can be implemented despite the presence of faulty switches.

Determining the degree of redundancy required is one of the building block

design decisions that will be considered later.

2. Protceuing Element Deign

The goal of the research in CHiP architectures is to investigate

problems in parallel computation such as: parallel programming, inter

processor communication, testing of concurrent systems, etc. CHiP

machines are an assembly of many conventional microprocessors. Each is a

von Neumann machine sequentially executing instructions dictated by the

contents of its program counter. The substantial body of knowledge and

design experience with such machines is built upon by using conventional

processors as fundamental units in a parallel system. As a result,

91

0 000 000 00 0000 00 0 E

00 00m00 00
2 00o~ oo o

0 0 2

00 0000 00000000

4 Ee.eeG ee eeee ea3

500 00 0 0L 00 00

*00000000000]00000

Figure 4.1.1 - Example of Wire Through in a
Building Block

92

processing elements are largely treated as "black boxes." We are not

concerned with details of the inner workings of the processing elements, nor

do we want to design a processing element - this has been done many time

by others.

However, knowledge of the area occupied by a processing element is

essential to the quantitative analysis of the implementation of wafer scale

machines. Fault tolerance is a necessity in a wafer scale system. It is

achieved through redundancy, and the degree of redundancy required

depends on the yield of the processing elements. Yield and area are closely

linked.

Area estimation involves us in the design of processing elements. It is

impossible to know the exact area of a processing element without

specifying all the design details of the machine. Choice of word length,

instruction set, control structure, etc. have a profound effect on the area

occupied by the machine. However, the design of a processing element is a

complex and lengthy task. Since the design of conventional and simple

processors is a well explored topic, we will not to repeat it. To circumvent

this, our goal is to estimate the area without producing a complete and

detailed design of a specific processor. This will be done in four steps:

1) Analyze the functional requirements of the processing component of

a CHiP processor. The intended applications of the machine determine

the capabilities the machine must provide.

2) Determine the major architectural features. Very high level design

decisions such as word length and memory size determine the gross

characteristics of the processing element.

93

3) Sketch the layout of the processing element. A simple schematic

floor plan showing the major elements of the implementation of the

processing element such as control logic, memory, registers and ALU is

proposed. Details of the implementation of the major blocks and their

interconnection are not covered.

4) Determine the size of the primitive cells. Each of the subsections of

the floor plan is composed of basic cells such as memory bits, a bit slice

of the ALU, PLA term, etc. The dimensions of these primitive cells can

be closely estimated from a previous design project by the author

[Hedlla] and from published reports on processor implementation

[Fitzsl].

Combining the floor plan and the dimensions of the individual cells, the area

of the major blocks of the PE can be closely estimated. Adding to the size of

the components an estimate of the wiring area required for their

interconnection, the total PE area can be estimated.

a) Functional Requirements

The intended applications of CHiP processors determine the

computational requirements of the individual processing elements. For

example, the granularity of parallelism of the applications is a primary

determinant of the processing element's required memory capacity. If a

relatively large computation is preformed by each processing element,

there must be substantial memory to hold the object code of the

computation and store the intermediate results. Similarly, if there are only

a small number of processing elements will be concurrently active, each

94

must be fast (and therefore complex) in order for the entire assembly to

have high throughput.

CHiP processors are capable of implementing a wide variety of

applications: database operations [Hsia82], signal processing [Snyd82b],

dataflow programs [Cuny82], and numerical applications [GannSl] are

among the problems suitable for processing by the CHiP family of

architectures. A major application of CHiP machines is the execution of

systolic algorithms [Snyd82a]. Systolic algorithms implement the control

structure of an algorithm primarily through the topology of the processing

element array and the synchronization of the processors. As a result,

different systolic algorithms require different interconnection patterns of

processors. The switch lattice of CHiP machines provides the

interconnection flexibility required for a processor array to reconfigure into

a wide variety of different topologies. Additionally, many of the algorithms

for the above applications area are systolic in nature. Systolic computation

is fundamental to CHiP machines.

The basic characteristics of systolic algorithms are [Kung79, Kung82,

MeadSO]:

0 simple and regular pattern in the flow of data and control signals

[highly pipelined computation

* only a small operation is performed at each computational site. This is

consistent with the pipelined nature of the computation. Each stage in

the pipeline performs only a small portion of the entire computation.

r +

95

the input data, intermediate results and output values are continuously

and rhythmically passed from one computational site to another. This is

the source of the term ".ystolic." There is a regular pumping of data

through the processor in a manner analogous to the pumping of blood

in a living organism. Data circulates rather than being stored in a

central memory.

An example of a systolic algorithm is matrix multiplication performed

on a hexagonal array of processors (example from [Mead0]; algorithm due

to Kung, et. al.). The problem is that of multiplying two n x n matrices with

bandwidth w (see Figure 4.2.1). The elements in the bands of the matrices

* A, B and C move through the network in three directions simultaneously.

Each element of C is initialized to zero. Every processor performs an inner

product step multiplying the incoming values of A and B and adding the

result to the incoming C value. A careful study of the flow of data and its

timing will convince the reader that each clj is able to accumulate all its

terms before it leaves the processor through the upper boundary (see

[Mead80] for a more complete discussion). The following observations about

the algorithm influence the design of processing elements to execute the

algorithm:

* Each processing element performs one addition and one multiplication

(and, of course, any read / write operations required to transfer the

* operands). Thus the program of each processing element is very short

and simple.

Only three data values are stored in a processing element at any one

time. The entire array collectively can hold a large amount of data, but

I

96

8314 a 4 4 b b,

I %

I :
•I I '

/C41 C32, C*j 14,%

42 C33 b

I /I

I e43 em CI
I

Figure 4.2.1 - Systolic Algorithm for Band Matrix
Multiplication (from [Mead8O])

[h •" " ",' ? ,: o •7" ,..aab lldli ilil- -I" i- - I]

f.4

97

each individual processing element stores only a few values. This

exemplifies the principle of processing power through the collective

action of many simple components rather than a few complex devices.

* High throughput is achieved through parallelism. A large number of

processing elements are concurrently active. It is not necessary for

each of the individual units to be fast in order for the entire assembly

to achieve a high processing rate. Once again, strength through

numbers.

* The computation is highly pipelined. As a single value of C passes

through the array, it accumulates more and more product terms. By

the time it reaches the upper boundary of the processor, the correct

value has been accumulated. Pipelining especially in combination with

large scale parallelism favors simple computational elements with

modest speed.

A large body of systolic algorithms for a wide variety of problems has

been developed in recent years. Algorithms exist for pattern matching in a

string, LU decomposition, transitive closure, minimum spanning tree,

dynamic programming, etc. (see [Kung82] for a comprehensive

bibliography). All systolic algorithms exhibit the above general

characteristics.

b) Proceuor CharacteriUtics

What are the implications of the characteristics of systolic algorithms

for the design of the processing element? The following basic architectural

features are proposed as being well suited to the implementation of systolic

algorithms:

• 98

1) Simple arithmetic oriented instruction set. The computational sites

in systolic algorithms in general do not perform long, complex

sequences of operations. Furthermore, many of the control operations

of the algorithms are implicit in the topology and synchronization of

the processing elements. This reduces the need for complex condition

codes and branching instructions. Furthermore, a simple streamlined

instruction set is consistent with an increasingly popular trend towards

simplified machin* architectures. A very small number of different

instructions account for a very high percentage of instructions

executed. These commonly used instructions typically perform simple

operations. This phenomena has been observed for many different

machines ranging from microprocessors to mainframes. Additionally, it

has been found to hold for the object code produced for a large number

of different high level languages [Peut77a, Peut77b, Knut70]. The

philosophy of simplified machine architecture is to directly implement

in the PE hardware only the most commonly used instructions. More

complex operations are performed by sequences of the simple

instructions. This philosophy is exemplified by the RISC [Patt8l], MIPS

[Hennfl] and 801 [Rad82] architectural projects.

2) 8-bit ALU. An 8-bit word is both the ALU width and the size of words

transferred between individual PEs and between PE and external

memory. As previously noted, the parallel and pipelined nature of
systolic computation deemphasizes the speed of the individual

computing elements. Computations on longer operands are performed

"" 99

one byte at a time - digit pipelined arithmetic [OwenSt]. This further

increases the pipelining of the machine. Furthermore, implementation

considerations favor short word size. The restricted number of

connections of the parallel processor to its external memory, and the

limitations on memory bandwidth place a restrictive upper bound on

the amount of data that can be practically transferred to or from the

processing array in unit time. The rate at which the processor array

requires operands must be matched to the limited memory bandwidth.

A small word size decreases the number of memory bits transferred for

each operand. Additionally, the area occupied by wiring between

processing elements is dependent on the word size. Switch area is

proportional to the square of the word size. A small word size

decreases wiring overhead.

3) Five internal registers. There is one register for each port and an

accumulator to hold temporary results. The port registers serve to

buffer PE to PE communications.

4) 64 bytes of random access memory. This is the main memory of

each processing element, and it holds both the PE's program and

6 temporary data storage which can not be contained in the registers.

The simple instruction set and the digit pipelined nature of the

arithmetic computation increase the amount of program memory

required. Some high level languages operations can not be performed

by a single machine instruction but require a sequence of simple

instructions. Plus digit pipelined arithmetic implements a single

arithmetic operation in a sequence of single digit operations. However,

100

the main memory can hold 32 16-bit instructions which should be more

than sufficient for systolic algorithms.

In many regards, the PE is similar to an 8-bit microprocessor such as

the 8080. Both have simple instruction sets, and 8-bit ALU, a limited

register file and byte wide data transfers. However, a CHiP processing

element has important differences from a general purpose microprocessor.

The environment of the PE is much more constrained. The limitations

imposed by tailoring the PE for systolic algorithms provide a more

restricted computational environment than that in which general purpose

devices operate. These restrictions allow the following simplifications in the

design of a PE:

There is no need to provide a flexible and complex interrupt

mechanism. The environment surrounding a PE is simple and fixed. A

processing element communicates only with neighboring PEs or

external memory. On the other hand, the general purpose

microprocessor must be capable of interfacing to a wide variety of

different devices from laboratory instruments, to terminals, to other

input / output devices. Furthermore, it must be able to communicate

with several of these devices simultaneously and perhaps with differing

priorities. One of the microprocessor's strengths is generality. As a

result, microprocessors commonly have a flexible, prioritized interrupt

mechanism. This greatly increases the usability of the device but also

increases its complexity. The constrained and limited forms of

communication required of a CHiP processing element allow it greatly

simplified communication and interrupt handling.

!4

101

* Microprocessors generally provide a rich assortment of addressing

modes to allow flexibility and convenience in fetching operands from

the central memory. But with systolic computation, operands are

continually being passed from PE to PE rather than residing in a

central memory. The need for sophisticated memory access

techniques is greatly reduced.

* Processing elements have a simple instruction set. As noted previously,

there is reduced need for complex condition code setting and

branching instructions.

* With the exception of PEs on the lattice edge, no signals are transferred

off-chip. This eliminates bonding pads and pad drivers from the

majority of PEs reducing their area.

In summary, CHiP processing elements due to their constrained

environment and simpler computational requirements can be considerably

simpler than conventional microprocessors. Simplicity leads to reduced

area and greater reliability. Additicnally, a simple machine has fewer gates

in the critical path of an instruction execution. Simplicity increases speed.

c) Layout and Area Estimation

Experience with the design of a simple prototype processing element

[Hedi81a] suggests the PE layout shown in Figure 4.2.2. (Note that this

rough floor plan is intended to be schematic in nature. The exact sizes of

the components and their arrangoment are approximately but not precisely

reproduced. The point is to "rough out" the design of a processing element

but not to provide the detailed design.) The register file contains the

102

Decoder JNADR

S
H
I A

Registers T
E
R

Figure 4.2.2 - Processing Element Layout -

a Schematic Floor Plan

103

Table 4.2.1 - Area Estimation for a Processing Element

Area(KX)
Main Memory (64 bytes)
Memory Array 478
Address Decoder 187

665

Datapath
Shifter 55.6
ALU 110
Registers 67.2

233

Control Logic
PLAn 230
Latches 420
Wire Routing 470
Scan in /Scan out 40

11, 60

Total for Components
Main Memory 665
Datapath 233
Control Logic 1160

2058
Wire Routing (20%) 412

2470
Misc. Expansion (20%) 530

Total PE Area 3000

104

accumulator, the four port buffers and the 64 bytes of program and data

memory. Both instructions and operands are fetched from the register file.

One of the operands can be passed through the shifter before entering the

ALU. The output of the ALU is stored back into the register file. The control

logic section is a set of PLAs which decode the contents of the instruction

register and time the sequence of data transfers to implement the current

instruction. The distinguished registers of the machine include the

instruction register (IR), program counter (PC), memory address register

(MADR) and the accumulator (AC).

,* To estimate the sizes of the components of the layout, we draw on the

experience of the RISC design team [Fitz8l]. Both the CHIP processing

element and the data path of the RISC machine share similar design

objectives. Both machines have simple instruction sets and datapaths of

reduced complexity, and both attempt to support high level language

programming with minimum processor complexity. Additionally, the RISC

team reported very detailed data on the layout complexity and size of their

design. In their design, they spent considerable time and effort in the layout

of compact and efficient components such as memory cells, ALU slices, etc.

This has proved invaluable in making tighter and more realistic estimates of

the area of the CHiP processing element.

Table 4.2.1 shows the area estimates of the major functional

components of the processing element. All estimates were derived from the

RISC Blue design group. Their layout was restricted to using only horizontal

and vertical lines, a Manhattan geometry. This restriction was forced due to

the computational complexity of the automatic circuit extraction and

105

design rule checking programs. Additionally, Mead and Conway design rules

were employed. A more realistic, industrial design environment would use a

richer and much more complex set of design rules which are fine tuned to a

*: particular fabrication process. Process specific rules have tighter spacings

and smaller wire widths than the Mead and Conway "generic" rules.

Designing with fewer restrictions and tighter design rules, better results

both in area and performance are certainly obtainable. The following

estimate may be regarded as an upper bound.

The area estimates in Table 4.2.1 were derived by scaling the functional

block area reported by the RISC blue design team. For example, the RISC

register array consists of 138 32-bit words and occupies 4.12 MA2. Each of

the static RAM cells is a standard six transistor design with two independent

data busses allowing two port access to the register file. Conceptually, this

allows the accumulator and port registers to occupy the same memory

array as the program / data memory. This reduces processor complexity.

The RISC word size is longer and the number of registers is larger, so the

area occupied by the memory of a CHiP processing element is estimated by

scaling down the area figures for RISC. Direct scaling of the memory area

reported by the RISC project shows that the 64 byte memory array of the

CHiP processing element will occupy area

64 8

13 3 4.12 2) = 478

Similarly, the ALU area scales linearly down from the 32-bit wide RISC

datapath that occupies 0.44 MA2 to

F.7 S ___

106

38 0.44 (MX') =110 (KXA')
52

The critical component of the RISC design is the memory. It occupies

most of the are of their design. As a result, considerable effort was spent

optimizing the memory cell layout and the memory fetch/store timing. The

memory area estimate can be considered to be quite near optimal. But the

pitch of the memory cell determined the height of the ALU. The ALU area

was not independently optimized, but rather its layout was dictated by the

requirement to mesh with a previously designed memory unit. This is not

necessarily optimal for the CHiP processing element. In short, there may be

room for improvement in the ALU estimate.

Not all components of the layout scale linearly. Decoder size is

proportional to the square of the number of inputs. The RISC memory

contains 138 words, and its memory decoder occupies area 0.87 MW. From

this the size of the address decoder for a 64 byte memory is roughly

18 8 0.87 (MX) = 187 (KX)

The shifter area also scales quadratically (from 0.89 MW' for a 32-bit shifter

of RISC) to

(32]0.89 (MX2) = 56 (KA')

Note that all components contain an area component which is independent

of the number of inputs. A more accurate scaling model is Area = An + B

where n is the number of inputs. The above analysis is an approximation

with B= 0.

' . o / ., . - . . . - -

107

In addition to the above components, the processing element

architecture includes a number of one byte registers: four port registers,

the accumulator, program counter, memory address register plus the two

byte long instruction register. A single byte register is estimated to occupy

area

8 3-4.12 (MA2) = 7464 (A2)I138 2

so the nine bytes required for the auxiliary register occupy 67.2 K A2.

Memory occupies a significant, 24.4%, of the PE area. To double check

the memory estimates, we calculate the estimated size of a single bit of

memory. Direct scaling estimates its area to be

1 1
_,2

138 32-4.12 (MA2) = 933 (A2)

With the reported vertical pitch of a register bit being 44 A. this results in

each memory bit occupying a 44 A x 21 A region. Since this is quite

reasonable for a six transistor, dual bus memory cell, our estimates are

accurate.

The instruction sets of both the CHiP processing element and the RISC

machine are similar. Consequently, the control logic for the two machines

will be of similar complexity. The control logic area for the CHiP PE is taken

to be identical to the RISC values. This figure includes PLAs, latches to

buffer the control signals, wire routing and scan in / scan out circuitry to

enhance testability.

F

108

The total area of the above components is 2.058 MA2. 20% additional

area is added for additional wire routing between the major functional

blocks. (This is the same percentage as reported by the RISC group.) Since

layouts always occupy more area than expected,' an additional 26% area is

added to bring the total area estimate to a round 3.00 M\ 2 .

From this estimate. a PE occupies a square of side 1732 A. Bringing this

estimate up to the nearest round number,

each CHiP processing element is estimated to occupy a 1750 A x 1750 A

region of silicon.

This final rounding results is an additional (1750)2 - (1732)2 = 62.5 kXA area

for each PE. Our area estimate is conservative. Above and beyond the

estimated size for all components and wire routing between them (2.470 M

an additional 0.530 + 0.0625 = 0.5925 MA2 has been added to the

estimate. This is an additional 24% for miscellaneous expansion. The

estimate contains considerable "free area" for unanticipated uses.

3. Datapath Deuign

Datapaths are the busses connecting switches and processing elements.

In addition to data, these signals also include control signals for the PEs and

switches. Each of the individual bus wires is independent of the others.

(Note that the term "datapath" is used ambiguously. In the context of

processing element design, the datapath is the portion of the machine that

transforms and modifies data - the shifter and ALU. Within the context of

lattice design, where PEs are treated as black boxes, datapaths are simply

1 a basic law of nature

109

busses transmitting data without alteration. The intended meaning of the

term will be clear from the context of its usage.)

The datapath is quite small in comparison to the processing elements

and switches. A PE occupies a square 1750 A on a side while in the following

section it will be shown that switches are approximately 250 A on a side. To

estimate the datapath width, assume there are ten signals per datapath.

This is sufficient for one byte of data and two control signals - one for the

processing elements and one for switches. The distance between PEs is

much longer than the distances encountered when routing data within a

single PE. To reduce signal transmission time, datapaths are implemented

in the metal layer since metal has much lower resistance and capacitance

than the polysilicon or diffusion layers. With Mead and Conway design rules,

each metal wire is 3 A wide, and the separation between wires is also 3 X.

Therefore a ten wire datapath has a minimum width of approximately 60 A.

This is one quarter the width of a switch and only 3.5% the size of a

processing element (Figure 4.3.1).

In addition to being small, the datapath width can be increased without

increasing the lattice area. Widening the datapaths in Figure 4.3.1 does not

increase the separation of switches and processing elements and so has no

effect on the size of the lattice. Note that this is dependent on the layout

details and shapes of the PEs and switces.

As a result, datapaths can be designed with relaxed design rules without

increasing lattice area. By increasing the width of wires, the probability of a

break in a wire is reduced. By increasing the separation between wires,

there is less chance that two adjacent wires will short out. Relaxed design

110

a-42-.

Figure 4.3.1 - Approximate RelativeSieoa
PE, Switch and Datapath

rules decrease the circuit's sensitivity to defects [Rung8l]. The same

number of defects may occur but the probability of a defect causing the

circuitry to malfunction is reduced.

The relationship between the design rule spacing and yield for a given

circuit is process specific. The amount of yield increase for a given increase

in design rule spacing can not be predicted without also specifying the

fabrication line on which the circuit will be manufactured. However, the

large disparity between switch and datapath size gives great flexibility in the

design rules for the datapath. The datapath width can be increased by a

factor of four without effecting lattice area. This allows wire widths and

spacings to be up to four times as large as allowed by the minimum

resulting in large yield increases.

From the combination of datapaths being small, simple and designed

with flexible design rules, we

e assume there are no fatal defects in datapaths.

This is of course an approximation, but with very high datapath yield, it is a

very close approximation.

Note that an increase in design rule spacing of the datapath has no

effect on the machine's performance. The signal propagation time is

unaffected by the width of datapath wires. As the width of a wire increases,

its capacitance per unit length increases proportionately. However,

resistance decreases linearly with width. Since the signal propagation time

is proportional to the product of the wire's resistance and capacitance, the

signal delay is unchanged by increasing the wire width.

112

4. Switch Design

a) Switch Layout

A sample layout of a switch is shown in Figure 4.4.1. The switch

displayed there is one of the simplest possible - degree four, no crossover

capability and only one configuration setting. Extensions to a more complex

switch are straightforward.

The switch architecture is organized around its bus rail - concentric

squares of independent bus wires. There is one wire in the bus rail for each

wire of the datapath. At each of the compass point directions, NSEW, the

bus rail is connected to the datapath. This connection is controlled by the

configuration setting. The four bits of the setting determine which subset of

the four datapaths are connected to the bus rail. If bits N and E of the

setting are "on" (with S and W "off"), these two datapaths are connected

together via the bus rail while the S and W datapaths are disconnected from

the bus rail. The configuration setting controls datapath access via four sets

of pass transistors. Each of the groups of pass transistors is driven by one

bit of.-the configuration settings as indicated by the labels on the control

lines in Figure 4.4. 1.

b) Switch Yield

A simple switch with degree 8 and crossover capability occupies an area

of approximately 250 A x 250 A. To estimate the yield of an individual

switch, recall that a normalized uniL area contains a 2 x 2 white latLico and

• . _ , •. . .-

1] 113

i.

W E

Figure 4.4.1 -Switch Layout - An Approximate floor Plan

IIe

"-I

____k______ _

114

has 20% yield (see Chapter 2). Since we have assumed that no fatal defects

occur in datapaths a unit area consists of four PEs and 21 switches. With

PEs occupying a 1750 A x 1750 A region, the lattice area sensitive to defects

* is

4 (1750)2 + 21 (250)2 (A2) = 13.56 (MA2) = 1 (unit area)

The area of a single switch is

As= (250)2 4.61 x 10- 3 (unit area)
13.56 x 100

Substituting this into the yield model

Ys= 0.991
(1 + AS so) 4

This indicates that switches will have over 99% yield.

The yield equation results from the mathematical modeling of the

manufacturing of t'ypical integrated circuits. Yield commonly varieq in the

2% to 50% range. Extrapolating this model to exceptionally high yields may

be unreliable. The 99% estimate may be either low or high. Although the

specific yield figure may be questionable, the general conclusion that can be

drawn is that switches have a very high yield. There is also another factor

that supports high yield.

Switches are quite small compared to processing elements. As a result,

a proportionately large increase in switch area results in only a small

increase in total lattice area. Furthermore, some switch expansion results

in absolutely no increase in lattice area. In Figure 4.3. 1, the switch can be

.1

115

expanded horizontally without increasing the PE to PE spacing.

Consequently, relaxed design rules can be used for switch design. As

with datapaths, switch yield can be increased with little or no impact on

area. In short, through their small size and use of relaxed design rules

very high switch yield can be assured.

To roughly estimate the size of a 2 x 2 white lattice, note that the lat-

tice has two rows of PEs and three of switches. The total edge length is at

least 2(1750) + 3(250) = 4250 X. Allowing for spacing between components,

datapath routing, power lines, etc., we conservatively estimate that a 2 x 2

white lattice occupies a square of edge 4750 X. With 1 technology, the edge

length is 4.75mm.

5. Lattice Design

So far in this chapter, the requirements for building blocks have been

specified, and the design of the individual processing elements, datapaths

and switches has been discussed. This section considers the integration of

these individual components into a building block meeting the requirements

of 99% yield and reliable wire through capability.

The first design decision to be made is the dimensions of the virtual lat-

tice which is mapped into the building block. After this, the characteristics

of the building block which hosts the virtual lattice must be decided upon.

This involves the degree of PE redundancy required to achieve high block

yield. Additionally, a switch lattice must be chosen that provides sufficient

wiring flexibility despite switch faults to implement both the mapping of the

virtual lattice into the block and wire through capability. These

..'

116

considerations are discussed in detail below.

The size of the virtual lattice determines in part the size of the building

block. A larger virtual lattice with more PEs necessitates a larger building

block.

Large building blocks entail several disadvantages. First, after the

mapping of the virtual lattice into the block. The maximum path length

between PEs is bounded by the size of the block. Larger blocks permit

longer paths. System speed is reduced by long paths. Hence, there is a

strong preference for small blocks that can be mapped using only short

wires.

Secondly. the complexity of determining the mapping of the virtual lat-

tice into the block increases with block size. With a larger block more

different mappings are possible. Since the mapping problem is solved by

basically brute force methods, increases in block size may substantially

increase the time required to determine the mapping. As a result of these

considerations, a small virtual lattice is chosen (Figure 4.5.2).

* a 2 x 2 virtual lattice will be mapped into the building blocks

A building block must be chosen that effectively hosts the virtual lat-

Lice. What are the requirements for a virtual lattice to be mapped into a

building block? Each component in the virtual lattice mutt have a counter-

part in the block. Therefore, at a minimum,

1) a block must contain at least as many functional PEs as the virtual

lattice

117

.9

.8

.7

S.6

.3

.2

0.

4 6 8 10 12
5 7 9 11

N =Nuiber of PEs

figure 4.5.L R ecovery Curve for four P1.
InIi PRO

a 118

00 0 00

Figure 4.5.2 - Virtual Lattice to be Mapped
Into a Building Block

119

and 2) an many functional witches as the virtual lattice.

In addition to the block swtche, which are images of switches in the

virtual lattice, there must be enough functional switches left in the block to

act as the connecting switches. These implement the datapaths of the vir-

tual lattice. They serve as the "glue" to wire together the components of the

virtual lattice. In short,

3) the datapaths of the virtual lattice must be mappable into the build-

ing bock.

The virtual lattice must be recoverable from the block with at least 99%

probability. For a successful mapping, each of the three requirements must

be met by a block. If a block fails to meet any one of the requirements, it

will be impossible to map the virtual lattice into the block.

By far the most difficult of these three requirements is that the block

has the requisite number of PEs. There are likely to be very few defective

switches or datapaths, and the yield of PEs is much lower than switches or

datapaths.

In the subsequent sections, a switch lattice that is highly robust will be

proposed for building blocks. Switches are small so the addition of redun-

dant switches causes little increase in the lattice area. The area of a switch

can be increased by a large perceniage while increasing the lattice by only a

small fraction. I'urthermore, much of this increase is in the portion of the

lattice occupied by the daLapatli. This part or the lattice is highly insensi-

tive to defects. Increasing its area causes very little increase in the number

I.

120

of fatal defects; lattice yield is almost unaffected. As a result, it is inexpen-

sive (in terms of area) to provide essentially 100% reliability through redun-

dancy in the switch lattice. Consequently, if a block contains enough PEs,

the mapping of a virtual lattice will be almost assured. PEs are the weak

link. We consider them next and then return to the switch lattice design.

a) Processing Elements

We must determine the number of PEs, N, per block such that four good

PEs can be found out of the set of N PEs with 99% probability. This is an

instance of the recovery problem discussed in Chapter 2. Drawing on the

results of recovery analysis, Figure 4.5.1 shows R (probability of recovery of

four PEs) vs. the total number of PEs. A total of 12 PEs gives the required

99% recovery so

* each building block contains a 4 PE x 3 PE CHiP lattice.

b) Switches

From section 4.4, switch yield, Ys, is estimated from the yield model to

be 99.1%. This yield is achieved through the combination of small switch

area, simplicity and use of relaxed design rules. Throughout this section,

calculations will be made for the purposes of comparison based on both 99%

and 97% yield for. This is a more conservative approach than flatly assuming

99 yield, and it will indicate the sensitivity of the design decisions to

changes in switch yield.

As noted in previous sections, :witchcs f,'vc high yield. B3uL no matter

how high the yield, the random nature of defects ieans that functiuoality

121

can not be guaranteed; some switches will always be faulty. Consequently,

each switch must have at least one other in the lattice that can take its

place. To provide adequate switch redundancy,

* the corridor width of the building block is two (Figure 4.5.2); twice that

of the virtual lattice.

This provides 100% switch redundancy. The building block has twice as

many switches as necessary.

Note that this redundancy has low cost. Switches are quite small in

comparison to PEs. Adding extra switches causes only a small increase in

overall lattice area. In Figure 4.3. 1, increasing the width of the switch corri-

dor between the PEs from one to two increases the separation of the PEs.

This increases the area occupied by the lattice by (no more than) 4 X 28

units for every row and column of switches. This increase the lattice ara

approximately 14%. Most of this additional area is occupied not by switches

but by the datapaths which are highly insensitive to the presence of defects.

The portion of the lattice sensitive to defects (PEs and switches) is called its

active area. This increases by only 2% (= 42 / (2(42) + 282)). As a result, the

yield of the lattice is effected very little by the increase in corridor width.

Furthermore, depending on the details of the switch layout, it may be possi-

ble to pack the second switch into the inter PE area in such a way that it

causes a smaller increase in the PE separation. In turn, lattice area would

increase less. In summary, both overall lattice area and lattice yield change

little as a result of increasing corridor width.

L

'.: -- i ". ::'" :." - - . -: " ...----- -- -" . - -" -t -J ' i -
- ' -

122

As noted in the previous section, PEs are the "weak link" in a building

'block. The key to a high block recovery rate is having the required number

of functional PEs. For a PE to be good, all four of its ports must be function-

fr. ing correctly. A port itself may be functional but it is unusable if the

switches to which it is connected are faulty. In the virtual lattice (Figure

4.5.2), failure of any one of the four switches directly connected to a port

renders the entire PE dysfunctional. A PE is not usable unless it can cor-

municate with its surrounding environment from all four of its ports.

To safeguard against a switch failure rendering a PE unusable, the

building block provides 100% switch redundancy at each port. Every port has

two switches connected to it. Either one switch or the other can connect

the port to the remainder of the switch lattice. Only one of the two switches

must be functional. Clearly, it is still possible for both switches attached to a

port to be faulty. At switch yield, Ys, of 0.97, the probability of a PE having a

port which is disconnected from the switch lattice due to a double switch

fault is 4 x (1 - Ys) 2 = 0.36%. At Ys = 0.99, this probability shrinks to 0.04%.

We can not totally prevent switch faults from disabling PEs, but the probabil-

ity is reduced to a very small value.

How many switches in a building block are likely to be faulty? The

switch yield is the average number of faulty switches. But since defects are

a random process, the exact number of faults per block will fluctuate from

block to block. What is the maximum number of faulty switches that can

"reasonably" be expected?

By the assumption of the random distribution of defects, the probabili-

ties of the individual switches being defective are independent. Since

f;

123

switches can be in one of two states, good or bad, a binomial probability dis-

tribution applies to the collection of switches in a block. An n PE x m PE

building block with double corridor width and two switches per port has a

total of (4n + 2)(4m + 2) - nm switches. The 4 x 3 building block has 240

switches. Let F be a random variable representing the number of faulty

switches per block. With Pr(F = f) representing the probability that a block

has exactly f faulty switches, we have

Pr(F =f) [20 (1 - YS)Y S 4 0 -

The expected value of F is 240(1 - Ys), and its standard deviation is

a = V40 Ys (1 -Ys)

These values are shown in Table 4.5.1 for 99% and 97% average switch yield,

Ys. From this it can be seen that on the average there are only a small

number of faulty switches per block. How does the actual number of faults

vary from block to block? By Chebyshev's Theorem, at least 1 - (1/4)2 =

15/16 = 94% of the blocks are within ±2 standard deviations of the mean. At

97% switch yield, this means 94% < Pr(7.20 - 2(2.64) < F < 7.20 + 2(2.64))

i:4 < Pr(F < 12.5), or at least 94% of the blocks have no more than 5% (=

12.5/240) of their switches faulty. For Ys = 0.99, the same fraction of blocks

has no more than 2% (= (2.40 + 2(1.54)) / 240 = 5.4/240) faulty switches.

Chebyshev's Theorem bounds the spread of F for any probability distri-

bution of F. The exact distribution of lP is shown in Table 4.5.2. 1xamining

these more exact calculations, it can be seen that the spread of the defect

4 distribution is somewhat less than predicted by Chebyshev's Theorem. The

binomial distribution clusters more tightly about the mean value than the

Chebyshev limits predict. With an average switch yield of 99%, almost all the

I

124

0000000000000000
. 00000000000000000000 o o FIo o F o o oo0 0 00 0 00 00

0 0 0 0000 0 0~ 0o Li 0 00
0000 00000000000

00000000000000000

oooooo oo 1oo F o ooF o o
0 0O 0000 00O0 O 0O00
000000000000000000
000000000000000000
0O 00000 00O0 O 0O00

Figure 4.5.3 - Building Block for a Wafer Scale
CHiP Processor

125

Table 4.5.1 - Effect of Switch Yield on the Number
of Faulty Switches Per Block

Switch Yield
0.99 0.97

expected number of faulty 2.40 7.20
switches per block (M)

standard deviation (a) 1.54 2.64

Table 4.5.2 - Probability Density of Defective Switches

f = number Switch Yield = 0.99 Switch Yield = 0.97
of faults Pr(F = f) Pr(F-5 f) Pr(F = f) Pr(F . f)

0 .0896 .0896 .0037 .0037
1 .217 .307 .010 .014
2 .282 .569 .022 .035
3 .210 .779 .043 .078
4 .126 .905 .073 .15
5 .0600 .965 .11 .26
6 .0237 .988 .14 .39
7 .00801 .997 .15 .54
8 .14 .68
9 .12 .80
10 .087 .89
11 --- .054 .95
12 --- .029 .97
13 --- .014 .99

-4r

126

blocks (>99%) realize at least 97% (= (240-7)/240) switch yield. Although the

actual switch yield can fluctuate in accordance with the binomial distribu-

tion, it almost never dips below 97%. Similarly, with Ys = 97%, all but one

percent of the blocks achieve 95% (= (240 - 13)/240) yield.

Derivation of Table 4.5.2

*The distribution of F for Ys = 0.99 was derived by directly applying the

formula for the binomial distribution

Pr(F = f) =(40) (i-ySr yS24f

For all but very small values of f, computing the binomial coefficient

(240)

is cumbersome and lengthy.

For Ys = 0.97, the binomial distribution was approximated by a normal

distribution [Ross76] with

Pr(F = f) = Pr(f-0.5 < F < f+0.5)

Let M be the mean value of F and a its standard deviation. Converting

to the unit normal distribution, , we have

Pr(F = f) = Pr a-M < F-M < f+.5-M

F r~ - M < .I0.5-M F 4 - M <f-0.-M)

r+o.r-M] 4f-0.5__

127

where the values of are obtained from a table of the normal distribu-

tion.

e) Mappability

The building block must contain the PEs and switches to serve as the

images of the PEs and switches in the virtual lattice. Additionally, the data-

paths of the virtual lattice must be implemented by the building block.

These are mapped to either single datapaths in the block or a path of con-

nected switches and datapaths; a single datapath of the virtual lattice may

become a chain of switches in the block.

In addition to producing one single mapping, it is desirable to find a

mapping that has a short maximum path length between component3. As

noted elsewhere, long paths reduce system performance.

The switch lattice of the building block can be chosen to help reduce

path lengths. By increasing the wiring bandwidth of the switch lattice,

shorter and more compact mappings can result. In particular, we propose

for the switch lattice of building blocks:

a) switch degree eight. The switch degree is increased from four in the

virtual lattice to eight in the building block. The addition of diagonal

connections allows some routings to "cut the corner" to reduce path

length. In Figure 4.5.4a, the diagonal datapath replaces one switch and

two datapaths that would be required in a degree four lattice. Longer

diagonal traversals reduce path lengths correspondingly.

ti

1o128

I Figure 4.5.4 - Wire Saving Due to Switches With
Degree 0 and Crossover Capability

r

-2 -

H°
I

I.

7 .

129

b) crossover capability. By allowing two independent paths to cross at

a switch, paths can often follow the most direct route instead of detour-

ing around crossover points. In Figure 4.5.4b, the crossover at the

center switch saves one switch and oye datapath.

Incorporating these characteristics in the switch lattice of the building

block increases the efficiency of the resulting mappings. More compact

mappings result with the corresponding increase in performance. We pro-

pose that

* building blocks have degree eight switches with a crossover capability

of two.

Even with this increased wiring capability of the switch lattice, it is

impossible to guarantee a mapping of the virtual lattice into the building

block even when there are the required number of functional PEs. It is

always possible that a mapping will be prevented by a particular pattern of

faulty switches. For example, an entire row of faulty switches divides the

block into two disconnected components. These particular patterns are

extremely unlikely given the high switch yield and the large amount of wir-

ing bandwidth provided by the switch lattice.

4) Wire Through

The requirement for wire through capability is that there exists five

continuous paths from the Left side of the block to the right side (Figure

4.1.1). The block is unused so all functional switches are available for imple-

menting the paths. Orienting the block so the short side is vertical provides

130

the least wiring bandwidth from left to right. This orientation is chosen for

the following worst case analysis. Additionally, the paths are allowed to start

and end at any switch on the edge. Note that this is a somewhat more

liberal criterion than is actually required for wire through in which paths

must maintain their relative positions. But adding restrictions to the format

of the path simply decreases the probability that such paths exist. In

effect, we derive an upper bound for the probability that the paths do not

exist. We show this upper bound is acceptably small.

Model the problem as a graph with switches represented by nodes and

the datapaths by edges. Since PEs do not participate in the wire through,

they are not included in the graph. A faulty switch corresponds to removing

that node from the graph. The problem is to find sets of nodes whose remo-

val reduces the minimum edge bisection width of the graph to four or less.

Call this bisecting the graph. Since the probability density of defective

switches decreases rapidly as the number of defective switches increases,

we first find the minimum set of nodes to bisect the graph. Bisections

requiring more than the minimum number of switch faults will occur less

frequently.

The narrowest portion of the graph is the eight columns from which a

PE has been removed. The graph is divided by the missing PEs into four

separate wiring channels each of which is is two switches wide. For the

graph to be bisected at slice A, each of the four channels must have at least

one faulty switch. The minimum bisection width of the graph is greater than

four unless this condition is met. (Note that by using the crossover capabil-

ity of the switches, the routing can be achieved with as few as three switches

~131

in any column - not five. The following is an upper bound.) The probability of

a given channel having at least one fault is

Pr(C) YS [~ (1 -YS) + ~JiYs)2
= 0.0296 Ys = 0.97

0.0199 Ys= 0.99

The probability of all four of the channels having at least one fault is

(Pr(C))4 = 7 x1O- Ys = 0.97
= 2 x1O- ? Ys = 0.99

With eight different slices, the probability of one of the slices bisecting the

graph is

8x(PrC))4 = 6x10 4 Ys 0.97
- Ixto0 Ys = 0.99

To bisect the graph through one of the columns containing 14 switches

(slice B, Figure 4.5.5), the probability is less than

10 x R4} (0.97) (0.03)10 = 5 x 10-12

Consequently, the probability of faulty switches causing the minimum bisec-

tion width of the graph to fall below five is negligible. As a result, we will

assume that

* building blocks can always implement wire through capability.

1i

132

CHkPTER 5

A WAFER SCALE CHiP PROCESSOR

In this section we consider the design of a wafer scale CHiP processor

using the building block described in the previous chapter. The goal is to

fabricate a large-scale parallel processor on a single wafer of silicon. This

would allow the processor component of a parallel processing system to be

constructed from a small number (perhaps one) of wafer scale components.

Consideration is given to the problems of the layout of the blocks on the

wafer, external connections, the actual number of processing elements per

wafer, and the overall efficiency of this approach.

1. Wafer Layout

Each building block occupies three times the area of a 2 x 2 lattice.

Since a 2 x 2 lattice occupies a square of side 4.75 mm, we approximate the

size of a block by a square with edge 4.75V' or 8.23 mm. (The actual

aspect ratio of the building blocks is highly dependent on the layout of

processors and switches. Blocks may have one side slightly longer than the

other. For simplicity we assume throughout this work that blocks are

square. However, we avoid packing the wafer Lightly with blocks. This leaves

unused wafer area available in the proposed wafer scale machines to

accommodate small adjustments in building block geometry.) The number

133

of squares of edge length e that can be packed into a circle of diameter D is

[Phiu7gJ

v D2 1.77 D
4 e2 e

The first term is th ratio of wafer area to chip area. The second term

represents the number of chips that do not entirely fit on the wafer due to

the curvature of the wafer edge. A 4" (101.6 mm) diameter wafer is the

industry standard, and it can hold a maximum of 98 of the 4 x 3 building

blocks.

However, it is not desirable to pack as many blocks as possible on the

wafer. Obviously, room must be left for bonding pads to connect the

machine to external memory or other wafer scale CHiP machines. But there

is a more important and subtle reason for limiting the number of blocks on

the wafer.

Defects, in general, are randomly distributed over the wafer surface.

The yield model developed in Chapter 2 is based, in part, on this assumption.

As a result, the analysis of fault tolerance, and subsequently, the choice of a

4 x 3 building block depends on random distribution of defects. This

assumption applies quite accurately to the entire wafer except for its

periphery [Stap73, Stap76, Laws66]. A band at the outer edge of the wafer

exhibits a substantially higher density of defects [GupL72]. This results from

several processing effects:

S5" wafers have been available for some time but are gaining acceptance slowly due to some

incompatibilities with existing fabrication equipment.

134

a) crystal dislocations formed during crystal growth

b) nonuniform diffusion caused by temperature variations at the wafer

periphery. This is particularly acute near the orientation fiat that is in

contact with the cooler diffusion boat.

c) beading of the photoresist near the edge

d) rounding of the wafer at the edge which causes pattern distortion.

The defect density measured inward from the edge decreases exponentially

to a constant value for the central region of the wafer. The width of the

region in which the density is significantly increased has been reported to

be in the range 4-5 mm [Gupt72] although it can be expected to vary

considerably from process to process.'

To accommodate these phenomena, building blocks are placed in the

central portion of the wafer and bonding pads are located on the periphery

(Figure 5.1.1). Pads are simply areas used as targets for soldering wires

onto the silicon. Their functionality is unaffected by the presence of defects

in the silicon. On the other hand, processing elements and switches are in

general rendered dysfunctional by defects. Therefore they are located in

the large cr.ntral portion of the wafer where defects are fewer.

[This results in efficient utilization of the wafer area. Instead of

uniformly distributing processors and bonding pads over the wafer (as in a

conventional layout), they are separated and placed in the most appropriate

portion of the wafer. Although processing exhibits a great deal of variability,

Industrial sources are very reluctant to reveal any exact figures regarding yield results.
One source [Stap78] defines a two area model with "inner" and "outer" rings of Lhe wafer ex-
hibiting different defect densities, but the dimensions of the regions are not specified.

135

9

D--

*. .

A IZTX -1-A A- T

__ * 2

C 4 f

Fiue5.. Iyu o aerSae 1± Prcso

136

some researchers report virtually no functional chips in the outermost 3

mm. The wafer scale machine effectively utilizes some of this area. In sum,

defect insensitive components are placed where defects are most frequent,

and defect sensitive circuitry is located where there are fewer defects.

2. Lattice Dimensions

The layout of the wafer scale CHiP processor is shown (in somewhat

schematic form) in Figure 5.1.1. In the center of the wafer is an 8 x 8 grid of

building blocks. From the results of the previous section, each of the blocks

has a 99% probability of containing a fully functional 2 x 2 mesh. When a

wafer contains a block that does not have a 2 x 2 mesh, the entire column

containing the faulty block is discarded. The column exclusion strategy

described in Chapter 1 is used to eliminate the occasional defective block.

On the average, how many usable blocks will a wafer yield? Since the

defects are randomly distributed, the chances of the individual blocks being

functional are independent events. Because the events are either "success"

(i.e. functional) or "failure" (i.e. faulty), the probability distribution of good

and bad blocks is a binomial random variable. Let Pr(F = i) represent the

probability that exactly i blocks are faulty.

Pr(F = i) = [6.4) (1 - p), p(,4

where p = 0.99 is the probability that a block is functional, a successful

event. The probability of occurrence of a given lattice size is derived as

foUows:

137

Derivation of Table 5.2.1

The probability of having a completely functional 8 x 8 grid is simply

the probability that there are no defective blocks, (0.99)64 = 0.526.

In general each defective block eliminates an entire column of blocks.

But to accurately compute the probability of occurrence of a given

lattice size, we must account for defective blocks falling in the same

column of the grid. In this case, only a single column is lost despite the

occurrence of multiple defects.

The probability of exactly one excluded column (giving a 16 by 14

lattice since each column is two PEs wide) is:

Pr(F = 1) + Pr(F = 2) Pr(2 bad blocks in same row or col) =

0.340 + (0.108) 4-= 0.364

The first defective block can occur anywhere in the grid. There are

seven blocks in the same row as the first defective block and seven in

the same column. So 14 of the remaining 63 blocks can be faulty but

still leave just one row (or column) excluded. The chances of 3 or more

bad blocks occurring and all falling in the same column are negligible.

The probability of exactly two excluded columns (yielding a 14 x 14

lattice) is similarly derived:

Pr(F = 2) Pr(2 bad blocks fall in different cols) +

Pr(F = 3) Pr(3 blocks occupy exactly 2 cols)

138

| ,,J

(0.108) 49 + (0.0226) L6=4 50 0.0914.63 '80

Table 5.2.1 shows the different possible grid sizes resulting from an 8 x

8 grid on a wafer and their probabilities of occurrence. About 53% of the

time all blocks are usable, and the wafer holds a CHiP processor of size 16

PEs by 16 PEs. 36% of the wafers contain exactly one excluded column. With

each block being 2 PEs wide, a 16 x 14 PE processor is recovered from the

wafer. Only 1.9% of the wafers will yield a CHiP machine of size smaller than

14 x 14. The expected number of usable PEs per wafer is 237. This

represents a truly large-scale parallel processor on a single wafer, and this

is achievable with current technology. With future scaling of device

dimensions, even more processors per wafer will be possible. Thus, these

results indicate that the processing element portion of a parallel processing

system can indeed be constructed from a small number (perhaps one) of

wafer scale components.

The choice of an 8 x 8 grid is quite conservative. It results in

substantial wafer are being left for bonding pads and drivers or to be unused

due to high defect density. In fact, an 8 x 8 grid occupies area

64 x (8.23)2 = 4335 mm2

(recall that each building block has an edge length of 8.23 mm, see section

1). But a 4" wafer has area B107 mm2 so only 53% of the wafer is occupied by

the CHIP lattice, Why was the 8 x 8 grid proposed? For the simple reason

that it is a safe choice. It is the largest square lattice that fits onto a 4"

139

Table 5.2.1 - Size of Wafer Scale Processor for 8 x 8 Grid

Lattice Size from an 8 x 8 Grid

cumulative size of CHiP
probability probability grid size processor (PEs)

.526 .526 8 x 8 16 x 16 = 256

.364 .890 8 x 7 16 x 14 = 224

.0914 .981 7 x 7 14 x 14 = 196

.0186 1.000 < 7 x 7

Expected Number of Good PEs = 237

Table 5.2.2 - Wafer Area Occupied by a Grid
of Building Blocks

% of 4'"
grid size area (sq mm) wafer area

8 6 4335 53.5
9 x 8 4877 60.2
9 x 9 5486 67.7
10 x 9 6096 75.2
10 x 10 6773 83.5

Table 5.2.3 - Size of Wafer Scale Processor for 9 x 8 Grid

4 Lattice Size from an 9 x 8 Grid

cumulative size of CHiP
probability probability grid size processor (PEs)

* .485 .485 9 x 8 18 x 16 = 288
K .380 .865 0 x 8 16 x 16 = 256

.109 .974 8 x 7 16 x 14 = 224

.0199 .994 7 x 7 14 x 14 = 196

.0060 1.000 < 7 x 7

4 Expected Number of Good Pb's =266

4L

140

Table 5.2.4 - Size of Wafer Scale Processor for 9 x 9 Grid

Lattice Size from a 9 x 9 Grid

cumulative size of CHiP
probability probability grid size processor (PEs)

.443 .443 9 x 9 18 x 18 = 324

.394 .637 9 x 8 18 x 16 = 288

.129 .966 8 x 8 16 x 16 = 256

.0271 .993 8 x 7 16 x 14 = 224

.0069 1.000 < 8 x 7

Expected Number of Good PEs = 297

Table 5.2.5 - Size of Wafer Scale Processor for 10 x 9 Grid

Lattice Size from a 10 x 9 Grid

cumulative size of CHiP
probability probability grid size processor (PEs)

.405 .405 10 X 9 20 x 18 = 360

.400 .805 9 x 9 18 x 18 = 324

.140 .945 9 x 8 1B x 16 = 280

.0414 .966 3 x 8 16 x 16 = 256

.0139 1.000 < a x 8

Expected Number of Good PEs = 329

141

wafer with a substanta safety margin of area. This area is required for

bonding pads, drivers, regions to be unused due to high defect density, area

*' loss due to the packing of rectangular biocks, the wafer's orientation flat,

variations from fabrication process to fabrication process in the size of a

unit area, etc, In accordance with Slotnik's Law, in this section the machine

architecture proposed incorporates as few new features, in addition to wafer

scale integration, as possible. Highly conservative choices are made for

virtually all design decisions. Additionally, variances from the conservative

choices are noted and their effects are analyzed.

The 47% unused area in the 8 x 8 grid is a very large safety margin. It is

quite likely that larger grids can be accommodated on a 4" wafer. (Or

alternatively, one could fabricate an 8 x 8 grid with larger PEs that are more

complex and faster. This option is more complex to analyze since changing

the PE area necessitates a reexamination of the degree of redundancy

required within a block. A 4 x 3 block may not be appropriate for

substantially larger or smaller PEs.) The maximum size grid that can be

patterned on a wafer depends on the details of the fabrication process,

layout details of the processing elements and switches, and wafer

characteristics. This must be determined experimentally for a particular

combination of PE design and process technology. We will be content to

propose a conservative approach and note the extensions that may be

possible.

Consider the range of possible grid sizes. First, what is the upper

bound on the wafer area that can be occupied by a grid? Once again, this is

strongly dependent qn the particular technology, but we inake some rough

C,

K.
.

142

estimates. Assume the outermost 5 mm of the wafer is unusable due to high

defect density. The ring of pads and drivers is approximately 0.2 mm wide.

To make a conservative estimate of the effective area, assume that the

bonding pads are placed within the 5mm outer ring. This will define a lower

bound on the effective wafer diameter. Thus the effective wafer diameter is

reduced from 4" (101.6 mm) to 91.2 mm. The area of this central portion of

the wafer is 6532 mm2 or 80.6% of the total wafer area. Table 5.2.2 shows the

area occupied by grids of different dimensions. A 10 x 9 grid is the

maximum allowed by the above bound.

Consider a possible alternative to the 8 x 8 grid. A 9 x 9 grid leaves

32.3% of the wafer area unused. This constitutes a fairly large safety

margin. It is still well below the 80% bound on usable wafer area derived

above. Thus a 9 x 9 grid i a reasonable choice for a 4" wafer although it

pushes the limits of technology more than the conservative 8 x 8 grid.

With the 9 x 9 grid, 44% of the wafers will have no excluded columns and

will realize a 18 PE by 18 PE processor (Table 5.2.4). This is a truly large

parallel machine. It represents a 25% increase over the 8 x 8 grid. Another

39% of all wafers will have exactly one defective block and will implement an

18 x 16 processor array. This is still 12.5% larger than the maximum size

machine achievable with the 8 x 8 grid. In total, 96% of the wafers will host a

CHiP processor at least as large as 16 PEs by 16PEs. The expected number

of good PEs per wafer is 297. This is 27% more than the 8 x 8 grid. In

summary, a substantially larger CIiP lattice is obtained with a 9 X 9 grid as

compared to an 8 x 8 grid.

143

What effect does the use of a larger grid have on the size of the CHiP

machine? Tables 5.2.3 - 5.2.5 show the lattice sizes obtainable with grids

larger than 8 x 8. The expected number of good blocks per wafer increases

in direct proportion to the grid size. As the grid size increases, the

probability of a fully functional grid decreases from -50% to -40%. With

more building blocks, there is an increased chance that one block will be

faulty. With technological improvements, the size of PEs and switches will

continue to decrease thus making even larger grids possible. The increased

possibility of a faulty block may ultimately put a limit on the maximum grid

dimensions.

3. Column Exclusion

When a column (or row) contains a faulty block and is excluded, the

adjacent columns must be connected together. The switches and datapaths

in the unused or faulty blocks are used to make the connection. Thus the

"wire around" requirement for blocks becomes a "wire through" capability

via the CHiP switch lattice (Figure 4.1.1). The double corridor width switch

lattice of the building block provides twice as much wiring bandwidth

through the lattice as is necessary. This redundant wiring capability can be

used to circumvent faulty switches. As shown in the previous chapter,

blocks provide wire through capability with very high reliability.

However, each switch introduces additional signal delay since a signal

must pass through a pair of transfer gates in each switch. To traverse an

unused column, typically ten to fourteen extra switches are introduced into

the path. In addition to switching delays, this requires that periodically in

the path the signal must be boosted by a super bufTer to prevent
CX

144

catastrophic signal degradation. But buffers introduce additional delays. In

short, column exclusion incurs a performance penalty.

The amount of signal delay incurred depends on the impedance of the

individual switches and the number of switches separating PEs. The design of

low impedance switches is an important practical problem in the

implementation of the CHiP family of machines. A combination of circuit

design and fabrication technology techniques such as the use of depletion

mode transfer gates with high channel doping levels reduces impedance.

These techniques substantially reduce switch delays. However, the delay

through even a fast switch is more than the delay incurred by directly wiring

together processors. The gain in flexibility due to the switch lattice is

bought at a loss in performance. This problem is common to all machines in

the CHiP family.

The number of switches between two PEs depends on two interrelated

factors: the specific PE configuration and the corridor width of the switch

lattice. The processor configuration is under the control of the

programmer. Some topologies can be mapped onto a lattice efficiently with

only short distances separating the PEs (for example, the mesh). Other

more complex arrangements require longer paths. A wider corridor width

provides additional wiring bandwidth and will in some instances allow more

compact layouts. But in any event, the corridor width of the switch lattice is

the minimum separation for any configuration. Since wafer scale systems

must be robust to switch failures in addition to processor faults, they must

have extra switching corridors used exclusively for fault tolerant

K reconfiguration. Thus, wafer scale systems, with their redundant switches,

KA

145

increase the number of switches that inter-PE signals must traverse. Wafer

scale systems pay for their low cost in the currency of performance.

4. External Connections

Consider the requirements of connecting the wafer scale machine to

external devices - either memory or other CHiP machines or both. At the

very maximum, every switch on the lattice edge has an external

connection.' With a data transfer width of one byte and two control lines per

datapath, each switch requires ten bonding pads. In a 16 PE by 16 PE lattice

there are 32 switches on a lattice edge or 320 bonding pads per edge. (No

external connections need be provided for the redundant switching

corridors since they are used exclusively for fault tolerant reconfiguration.)

Each bonding pad is a square with edge approximately 0. 1 mm on a side and

0.075 mm spacing between pads [MeadBO]. So at a total width requirement

of 0. 175 mm per pad, a line of 320 pads extends 56 mm. This is just slightly

more than the radius of the wafer. Counting all lattice edges, 4 radii of pads

are required. The circumference of the wafer is 2n radii long. So the pads

can be arranged around the perimeter of the wafer in a single circular

pattern. Note that additional external connections can be implemented with

multiple concentric circles of pads.

The off-chip drivers are located between the circle of bonding pads and

the CHiP lattice. They connect a subset of the switches on the lattice edge to

bonding pads and provide the required signal amplification to reliably and

1 In practice, providing connections jusL for the switches directly connected to PEs should
be sufficient to meet the 1/0 requirements. This cuts the number of externa; connections at
least in half which may be more in litic with the hmtatiots of packaging technology. The
above represents a worst case analysis.

0

.

146

quickly transmit signals to an off-chip source.

A CHiP machine can not afford to have a switch on the lattice edge with

a missing external connection. The interface of the switch lattice to its

external connections must be complete and symmetric. Therefore the

integrity of the driver circuitry and the connections to the bonding pads and

switch lattice must be very high. There is the potential for the loss of an

entire column of blocks should a driver fail.

A number of steps can be taken to insure reliability. First, the drivers

are placed inside the band of high defect density near the wafer edge. This

removes them from the wafer area most prone to circuit faults. The exact

location depends on the wafer characteristics and the sensitivity of driver

circuitry to defects.

Second, drivers can be designed to be highly reliable. Pad drivers are

relatively simple which reduces their chance of failure. Also, much of the

circuitry is composed of large transistors - many times the size of a

minimum geometry transistor [Hon8O]. This is necessary due to the large

power and current requirements of off-chip signals. Large size decreases

the sensitivity to defects and increases yield. Additionally, the entire pad

driver, especially the smaller geometry circuitry on the switch lattice side,

can be designed with relaxed design rules. This once again can substantially

increase yield. Wider wires with larger spacings are less likely to fail. This

slightly increases the pad area and the signal transmission time but is a

small price to pay for increased reliability.

147

Third, provide redundant drivers. In addition to making drivers

reliable, add 100% driver redundancy at each pad. In the rare case that a

driver is faulty, its redundant counterpart functions in its place. Both

drivers are connected to the pad (and switch) via a common bus (see Figure

5.4.1). In case of an active fault (e.g. a short of the bus connection to Vdd

or Gnd), the driver can be physically disconnected from the bus by laser

trimming or fuse blowing. The bus wire can be made wide enough and with

sufficient spacing from neighboring circuitry to insure bus integrity. Lastly,

redundancy in the form of complete pad / driver combinations can be

added. This guards against the occurrence of non-random defects at the

wafer edge.

In summary, the problem of providing extremely reliable off-chip

drivers can be solved by technological means. There are no fundamental

difficulties. A combination of driver reliability achieved through relaxed

design rules and redundancy achieves the required reliability. The exact

combination of these techniques required to produce the desired reliability

is technology specific.

5. Efficiency

In each block only four of the twelve processors are used regardless of

how many more are actually functional. Furthermore, every time there is

one bad block, an entire column of eight blocks is discarded. It appears

that the two level hierarchy approach to implementing wafer scale

integration makes very inefficient use of the wafer surface. Surprisingly

enough, this is not the case.

148

Driver 1

Driver 2

Bonding

Pad

Figure 5.4.1 - Redundant Pad Drivers for High Reliability

I7

149

Consider the alternative to implementing a 2 x 2 lattice with fault

tolerant building blocks. The fault tolerant approach will be compared to

conventional manufacturing of integrated circuits without redundant

components. Let us simply pattern as many 2 x 2 lattices on the wafer as

possible, scribe the wafer into the individual 2 x 2 lattices and package

them. Since the 2 x 2 lattices are considerably smaller than the fault

tolerant building blocks, a 4" wafer can hold 321 of them. At 20% yield (our

reference point since one normalized unit area holds a 2 x 2 lattice and has

by definition 20% yield), there are 321 x 0.20 = 64 good lattices per wafer. In

the wafer scale machine (with the conservative choice of an 8 x 8 grid), the

expected number of PEs is 237 occurring in 59 2 X 2 lattices. This is 9%

fewer than with conventional processing.

Is this a victory for the conventional approach? Not quite. First, the

number of 2 x 2 lattices actually patterned on the wafer will be lower than

321. The bonding pads required at each lattice have not been accounted for.

As a result, the area of each lattice must be slightly larger.' Also there

must be scribe lines between lattices. This consumes a little more area

leaving less for the lattices. Secondly, the increased defect density along

the edge of the wafer greatly reduces the chip yield there. 20% yield is

achieved only in the central portion of the wafer. Averaged over the entire

wafer, somewhat less than 20% yield will actually be realized. As a

consequence, there will be fewer than 64 good lattices per wafer with

One advantage of the wafer scale approach is that there arc fewer total number of bonding

pads. The internal lattice connections are madc not by large (acd slow) pads and off-chip
drivers, but by direct wiring in silicon from PE to PE.

U

150

conventional processing, The exact number depends on processing details.

Just as we were liberal with the estimates in the conventional approach,

we have been conservative in the estimations for the wafer scale case.

Remember that the 8 x 8 grid of building blocks is a very conservative

choice that occupies only 53% of the wafer area. In practice, a larger grid

could be used. The exact dimensions of the largest lattice that can be

patterned on a wafer is dependent on the particular fabrication process and

the characteristics of the wafers. This must be determined experimentally,

but in any case, there would probably be more than 59 lattices per wafer.

In short, the initial estimates overstated the number of good lattices

obtained through conventional technology and understated them in the

wafer scale case. In practice, the number of good lattices per wafer is

comparable in both approaches, but the exact numbers of good lattices is

dependent on processing technology. As a result, we can conclude that the

* use of fault tolerant building blocks to implement wafer scale

integration makes efficient use of silicon area.

The reason behind this is that the area lost to redundant PEs is more

than made up for by the increased yield provided by the redundancy.

Examining the curve of building block recovery vs. the number of PEs (for

the recovery of a fixed size 2 x 2 lattice, Figure 2.5.2), we find the curve

rises quiLe quickly This means a small amount of fault tolerance has a big

payoff in terms of yield; a modcsL amounL of fault Lolerance has high

leverage.

151

On the other hand, the area increase due to redundancy is linear. The

Carea of a lattice increases in direct proportion to the number of processors.

This follows for two reasons. First, the mesh connected structure of the

lattice requires that each component be connected to only a fixed number

of other components. The number of connections does not increase with the

size of the lattice. (This property is not enjoyed by many of the other

interconnection networks. For example, the binary cube requires that each

processor in an N node machine be connected to [log N I other nodes. Thus

the number of wires per processor can be very large for large-scale binary

cubes.) Secondly, the local connection structure of the mesh requires that

each node be connected only to its physically adjacent neighbors. Each of

the wires connecting PEs has constant length independent of the lattice

dimensions. The distance of a PE from its neighbo-s to which it is connected

is independent of the size of the mesh. (Once again few other

interconnection strategies preserve locality. A perfect shuffle connection

network has a constant number of connections per processor regardless of

the network size. But each node must be connected to a node in a fixed

relative position in the shuffle. For example, node 1 is connected to node

N/2. So, as N increases, the length of each connection (on the average)

increases. As a result a perfect shuffle of N PEs requires O(N2 / log 2 N) area

[Klei8l].) With the number of wires and their length both constant, the area

occupied by wires increases in proportion to the number of processors in

the mesh. Since PE area is also independent of lattice dimensions, the

lattice area grows linearly with the number of PEs.

K I

L
152

As was shown in Chapter 2, redundancy can provide large increases in

the recovery probability. This means that modest amounts of redundancy

increase the efficiency of use of the wafer area. The area taken up by

redundant PEs is more than made up for by the increased recovery. In

Chapter 2 it was seen that modest amounts of redundancy (e.g. ~50%) lead

to optimum use of the wafer area. The need for very high block yield (as

required by the column exclusion strategy) necessitates that building blocks

have much higher redundancy than for optimal area utilization. However,

the PE utilization does not fall below the PE utilization without redundancy.

Utilization for conventional, non-redundant chips and building blocks are

similar.

6. Effect of Technological Advances

The wafer scale CHiP machine described above can be fabricated with

current (1982) technology. Four inch wafers are the industry standard and

have been commonplace for several years. The complexity of the processing

elements is less than that of a simple microprocessor, and switches are

considerably simpler. The design of the individual components is straight

forward in comparison to the current generation of advanced

microprocessors. Simple PEs 1.75 mm on a side can be produced with gate

lengths and wire widths attainable by current state of the art semiconductor

manufacturing processes. In summary, the wafer scale processor does not

depend upon unconventional or experimental technology.

however, semiconductor fabricalion technology is not static.

Transistors will continue to shrink in size. Defect densities will continue to

be reduced. Wafers will becomc purer and larger in diameter. In short,

153

more circuitry will continue to be packed into a smaller area with decreased

power consumption and increased circuit speed. The pace of these advances

has been slowing in recent years due to increasingly difficult technological

problems, physical limitations and mounting capital costs of the

increasingly sophisticated fabrication equipment. Although the pace of

advancement is slowing, the trend is inexorable [Noyc77].

What will be the effect of technological advances on wafer scale

machines? Larger wafers will allow the fabrication of CHiP lattices of larger

dimension which are composed of more powerful processing elements. Also,

the scaling down of device sizes has positive impact on virtually all circuit

parameters. Processing elements will become smaller, more reliable and

less power hungry. This will lead to larger lattices on the wafer, less

redundancy required within each building block and reduced switching

overhead. Although the direction of these trends is clear, this section

quantitatively analyzes the effect of technology improvements on wafer

scale CHiP processors.

In previous sections, the estimates of PE size and number of PEs per

wafer are based on a conservative assessment of current technology. We

have assumed 4" wafers and transistors with 2 /Am channel lengths. Both of

these are typical of state of the art fabrication processes currently (1982) in

volume production. This represents the baseline case against which

technological advances will be compared. For the purposes of comparison,

we will project a short term and a long term technological advancement.

Some major facets of the design of wafer scale CHiP processors will be

reconsidered in these new contexts and compared to the baseline case.

154

a) Wafer Size

Wafer diameter has steadily increased over the years. In the early

1960s, wafers 1.5" in diameter were common. Today, 4" wafers have be

commonplace for some years. They are the standard of the industry.

Additionally. 5" wafers are available. Due to some incompatibilities with

existing fabrication equipment, their use has not become widespread but

their acceptance is growing. A fivefold increase in wafer area over the span

of two decades is a snails pace compared to the pace advances in device

scaling. ,Consequently, as the representative of long term future technology,

a modest increase in wafer diameter to 7" is selected. This represents a

doubling of the area of the current state of the art 5" wafer.

In the following discussion, the characteristics of wafer scale machines

fabricated on 5" and 7" wafers will be compared to 4" wafer. The 4" wafer

represents the baseline case for well established current technology. 5"

wafers are at the cutting edge of the current state of the art, and 7" wafers

represent the possibilities of long term future technology.

The characteristics of wafers with diameter of 4", 5" and 7" are shown in

Table 5.6.1. The 7" wafer has over three time the area of the 4" wafer.

4 However, recall that not all the wafer area can be occupied by building

blocks. Assume that the outer 5mm of a wafer can not be occupied by

building blocks due to high defect density. (In practice, some of this area

will be occupied by bonding pads and their drivers.) We will estimate the

number of building blocks that can be fabricated on a wafer. Define the

effective diameter of the wafer as the wafer diameter minus 10mm. It

delimits a lower bound on the effecive wafer area. This is the area that can

potentially be occupied by processing elements and switches.

155

Table 5.6.1 - Effect of Wafer Diameter on the

Wafer Scale CHiP Processor

Wafer Diameter
4@1 5to 71

total wafer area (sq mm) 8107 12.668 24,829

effective wafer area (sq mm) 6590 10,751 22,114

maximum number of blocks 77.6 133.6 290.4
in effective area (lower
bound)

maximum grid size (blocks) 9 x 9 11 x 11 17 x 17

156

The increases in effective area between the 4" wafer and the larger ones

are even more pronounced than the increase in the total area. Removing a

fixed size outer band eliminates proportionately more area from small

wafers than from large ones. The effective area of a 5" wafer is 63% larger

than the 4" wafer, and the 7" wafer has 3.4 time the effective area of the 4"

wafer. There is room for substantially more building blocks on the larger

wafer.

The maximum number of square building blocks with edge length e that

can be packed onto a circular wafer of diameter D is given by formula 1. 1

vD - 1.77 D
4e 2 e

Using the above equation, Table 5.6.1 shows that the maximum number

of blocks per wafer increases by 72% for the 5" and 274% for the 7" wafer. As

expected, much larger CHiP processors can potentially be fabricated on the

larger wafers. The maximum number of blocks increases more quickly than

the effective area. Note that the effective area increases are only 63% and

236% for 5" and 7" wafers respectively. The reason for this is that larger

wafers are less effected by edge curvature. With an arc of larger radius, the

relatively small building blocks can be placed around the the wafer edge

with less waste of area. Additionally, with larger wafers, a larger fraction of

the wafer area falls in the center and is unaffected by edge curvature. In

particular, from the second term of equation 1. 1 we see that a 4" wafer has a

20% reduction in the number of blocks due to edge curvature. 5" and 7"

wafers lose only 16% and 11% of their blocks respectively. In summary,

building blocks can be packed more efficiently into larger wafers than

smaller diameter wafers. This results in more efficient use of the wafer area

for larger diameter wafers. The increase in the size of a wafer scale CHiP

157

processor that can be patterned on a larger wafer is greater than simply the

increase in wafer area. A 7" wafer can hold 3.7 (290.4 / 77.6) as many

standard PEs as a 4" wafer whereas the ratio of total wafer area is only 3:1.

In terms of maximum square grid size, a 4" wafer can hold a 9 x 9 grid.

An 11 x 11 fits onto a 5" wafer, and a 7" wafer can hold a huge 17 x 17 grid of

building blocks. This represents a 34 PE by 34 PE CHiP lattice - a truly

large-scale parallel machine. Even the use of a 5" wafer (which is well within

the scope of current technology) allows the fabrication of a CHiP lattice with

50% (A 112 / 92 - 1) more PEs than the 4" wafer. In summary, even a

modest increase in wafer diameter substantially increases the maximum

size of a wafer scale CHiP processor through both an increase in wafer area

and more efficient utilization of that area.

b) Device Scaling

As advances in semiconductor manufacturing technology continue, the

size of devices continues to be reduced. Wires become narrower and

transistors smaller. Although the rate of progress is slowing, further

advances can be expected. What will be the effect on wafer scale machines?

This section examines some of the consequences of smaller processing

elements and switches on the design of wafer scale CHiP processors.

In the previous sections, the area estimates for PEs and switches were

based on Mead and Conway design rules under the assumption that A = I

"Am. This corresponds to a transistor channel length of 2 pAm and is

conservatively representative of current technology. Intel's HMOSII process

achieves 2 /m channel length and has been in volume production for several

F:

158

years. HMOSII is a mature technology and its successor will soon be

introduced. As a result, we select as a reprv* tative of near term

technology a doubling of the device density. This corresponds to shrinking

the lateral dimensions of devices to 70% of their current dimensions - a

channel length of approximately 1.4 p m. As for the long term advances in

device scaling, the DOD has launched a concentrated effort to achieve 1 pam

technology which would quadruple the device density. It appears that this

goal is achievable through the extension of current optical lithography

techniques, and it is a feasible goal for the late 1980s. Consequently, a

channel length of 1 p m is selected as the representative of long term

technology advances.

With smaller PEs, their yield increases. When the PE area is shrunk in

half, the yield (computed by the yield model, equi.tion 2.2) for a 2 x 2 CHiP

lattice doubles (Table 5.6.1). Higher PE yield reduces the amount of

redundancy that is required to achieve 99% block yield. Consider the

reduction in device area by a factor of two. Examining Figure 2.5.4 shows

that four functional standard PEs (with their area scaled by a factor of 0.5)

can be found in a group of 9 PEs with 99% probability. Thus the dimensions

of a building block with a 99% recovery rate can be reduced from 4 x 3 to 3 x

3. Only five redundant PEs per block are required instead of eight.

Redundancy is decreased by one third with no decrease in the recovery

probability of the block. Not only is the area of a single PE cut in half, but

the number of PEs in a block is reduced. This results in a double area

savings - smaller PEs and fewer of them.

159

There are two main consequences of the reduction in block dimensions

due to smaller PE size:

1) More efficient use is made of the wafer area. Wafer scale integration

implemented via column exclusion imposes overhead in the form of the

redundancy required to achieve high block yield. The redundant PEs

are not an integral part of the CHiP lattice; only a fixed number of PEs

are recovered from each block. But still they occupy area that could

be used by the lattice. Smaller PEs have higher yield and require less

redundancy for the same block recovery rate. This frees wafer area for

additional blocks.

2) Smaller building blocks have shorter paths between PEs. Recall that

the maximum path length between two PEs is determined by the

building block dimensions (Chapter 4). Reducing the block size to 3 x 3

results in fewer switches between PEs and decreased signal

* . transmission time. Device scaling leads to not only more efficient use

of the wafer area, but decreased switching overhead. Performance is

correspondingly enhanced.

How much can the block area be reduced by the use of the smaller PEs

and switches? In the baseline case, each 4 x 3 building block occupies a 67.7

mm2 region of silicon (Table 5.6.2). By scaling down this value, we estimate

that the area occupied by each 3 x 3 building block to be approximately

67.7 9 = 25.4 (mm2)
2 12

160

Table 5.6.2 - Effect of Device Scaling on the Wafer
Scale CHiP Processor

Relative Area
1.0 0.50 0.25

channel length (/pm) 2.00 1.41 1.00
PE area (M jm **2) 12.3 6.13 3.06
yield of a 2 x 2 lattice 0.200 0.412 0.627
PEs / block for 99% Recovery 12 9 7
building block area (sq mm) 67.7 25.4 9.88
block edge length (mm) 8.23 5.04 3.14
grid size per 4" wafer 9 x 9 14 x 14 23 x 23

.....

161

The area of each PE and switch is cut in half, and the number of PEs is

reduced from twelve to nine. Assuming a square block, the block edge length

is V2-. = 5.04 (mm).

How many of these smaller building blocks can be placed on a wafer?

As shown previously, a 9 x 9 grid of blocks with edge length 8.23 mm can be

fabricated on a single 4" wafer. In the scaled down technology, the shorter

block edge length means that a grid of roughly

8.23 9 = 14.7
5.04

blocks per side can be fabricated on a 4" wafer. Rounding this down, the

wafer can hold a 14 x 14 grid of building blocks. Since the same 2 x 2 virtual

lattice is mapped into each of the building blocks, a 28 PE x 28 PE lattice

will fit on a single wafer. The number of PEs increases by a factor of 2.4 (

28 / 182). So cutting PE area in half more than rtoubles the number of PEs

per wafer due to the increased efficiency in the use of the wafer area. There

is an additionally 20% (= 0.4 / 2.0) increase attributable to increased

efficiency. Note that the increase due to efficiency is not equal to the

reduction in the number of PEs per block, 25% = (12 - 9) / 12. The increase

is lower due to the restriction that the wafer contains a square grid of

building blocks. If (14.7)2 blocks could be put on the wafer, a full 25% gain

due to efficiency would be realized.

Now consider the quadrupling of the device density. The yield of a 2 x 2

lattice of standard PEs more than triples to 62.7%. Once again the yield

increase reduces the amount of redundancy required. Only three extra PEs

4:

L162

are required to give a 99% recovery rate of four PEs (Figure 2.5.5).

Redundancy is reduced from eight extra PEs in the baseline case to only

three PEs. The building block area is correspondingly reduced to

6. 7= 9.87 (mm2)

4-12

with the block edge length of '/F = 3.14mm. This results in a grid of no

more than

8.238.3. = 23.63.14

blocks per side (Table 5.6.1). This is an increase of 653% over the baseline

case. Of this, 400% is directly attributable to smaller PEs, and the

remainder to the reduction in the number of PEs per block.

7. Practical Implementation Considerations

The previous chapters have covered the general principles of the

implementation of wafer scale integration: two level hierarchy, column

exclusion and fault tolerant building blocks. Structuring, the major hurdle

in the implementation of wafer scale systems, is achieved through a

combination of these design principles. In addition, a number of lower level

implementation issues have also been discussed: wafer layout, swit-h lattice

structure, external connections, etc. Despite the (apparent) success of this

approach, a host of engineering problems must all be solved before the

wafer scale CHiP machine can make the transition from paper to silicon.

The problems of heat dissipation, clock skew, routing of power and ground

wires, etc. must be addressed before a wafer scale machine can be

163

constructed. A number of these practical implementation considerations

are discussed in this section.

a) Power Consumption

Electrical signals are changed by the storing and discharging of

electrical energy. This requires the application of power which is

transformed into heat. To maintain a continuously operating device at an

acceptable temperature, this heat must be transferred from the device to

the surrounding environment. As more and more devices are packed into

smaller and smaller volumes, there is a gre.ater concentration of heat in a
4

smaller volume with less surface area available to conduct away the heat.

Power dissipation becomes increasingly difficult. The problem of power

dissipation is a difficult one for high density LSI chips.

This problem is particularly acute for wafer scale systems. A wafer

scale system has on the order of 100 times as many components as a

complex LSI chip. This very large number of circuits is packed into a single

package. A single wafer scale system may replace an entire printed circuit

board resulting in a large increase in the density of gates per cubic

centimeter.

To address this problem, we will first estimate how much power can be

dissipated by a wafer. This will in turn dictaLe the power consumption

* requirements of the individual switches and processing elements. Finally,

the design of the switches and PEs to meet these power requirements will be

considered.

6

164

Since we have not proposed one specific design and layout of PEs and

switches, the power consumption figures derived below will necessarily be

rough estimates. Exact figures can be obtained only for a specific

processor. We will attempt to show that the class of wafer scale CHiP

processor discussed in this work can with proper design meet reasonable

power consumption restrictions.

A single chip can dissipate 1W with only common and inexpensive

packaging technology. Up to 5W per chip can be dissipated through the use

of exotic and expensive packaging techniques such as direct water cooling,

heat sinks and cooling towers. A wafer has approximately 200 times the

surface area of a single chip; there is a much larger surface area over which

to perform the heat exchange with the surrounding environment. With

similar packaging technology, the larger wafer scale system should be

capable of dissipating substantially more power than, a single chip.

With forced air cooling a printed circuit board can dissipate up to

approximately 0.5W per in 2 [Stee81]. With the surface area of a 4" wafer

being 12.6 in 2 , this indicates a limit of approximately 6W per wafer. Since

the 0.5W / in 2 figure was for printed circuit boards consisting of a number of

separate packages, the application of this estimate to a single package

Mafcr scale systems may not be entirely accurate. Consequently, 6W will be

regarded as an upper bound. In accordance with our conservative design

philosophy, in the following considerations we will atLcmpt to not exceed 50%

of this bound. 3W pcr wafer will be the target for power consumption.

CMOS technology is the natural choice for reducing power consumption

[Yu8l]. The speed-power product for CMOS gates is substantially lower than

165

for any other technology. CMOS circuitry typically runs at a small fraction

of the power consumption of an identical circuit implemented in nMOS

technology.

An additional advantage of CMOS technology is that the static power

consumption of gates is virtually zero. CMOS gates consume power only

when they are changing state. A static gate draws only the current

necessary for the gate leakage current - on the order of a few nanoamps. On

the other hand, with nMOS circuitry, all gates that are "on" continuously

draw an appreciable arrount of power.

This is especially advantageous for CHiP processors since they have a

large number of static components. The switch lattice structure remains

fixed for relatively long periods of time. The switch settings remain

unchanged except when the lattice is being reconfigured into a new

interconnection pattern. With CMOS implementation, the switches will draw

essentially no power except during a reconfiguration. Since there are a very

large number of switches on a wafer (- 20,000), this results in a large power

savings.

Furthermore, with CMOS technology the power consumption is directly

proportional to the clock rate. The faster the gates change state, the more

power that is consumed. This allows the system architect to fine tune the

power consumption by varying the clock rate. System speed can be traded

for power, if necessary.

As a result of the overwhelming advantage with regard to power

consumption and the competitive speed and density characteristics of state

ocr of the art CMOS processing technology, it is proposed that

166

wafer scale systems be implemented in CMOS technology.

Use of CMOS technology solves the power consumption problem (as will

be shown in this section), but it introduces another difficulty. The estimates

of PE and switch size (Chapter 4) were based on the implementation of the

standard PE in nMOS technology. Implementing an identical design in

another technology will not necessarily result in the layout occupying the

same area. CMOS circuits typically require somewhat more area than their

nMOS counterparts. As a result, a second pass through the design of building

blocks (Chapter 4) should be made for the CMOS implementation of the

standard PE.

However, state of the art CMOS processes require only marginally more

area (e.g. - 10 - 15%) than the corresponding nMOS circuits and in some

cases require slightly less area. Consequently, the CMOS area estimates

depend on the particular design rules of the CMOS process and the details of

the PE design, but in any case, the design of a building block should not

vary drastically from that which was proposed in Chapter 4.

What power consumption requirements are imposed on the individual

PEs and switches by the need to collectively dissipate a total of 3W? The

answer to this question depends on the operation performed by the CHiP

machine. CHiP processors operate in one of two modes:

a) Computational - the switch lattice is held in a fixed structure. The

PEs compute anid exchange data values.

b) lRestructuring during a rcstructuririg phase, computation is

gencrally not performed L)y the PIls, but raLlier the strucLure of the

switch lattice is altered to provide a new interconnection topology. The

167

individual switches each fetch a new current configuration setting from

their local memory.

In a restructuring phase, how much power is consumed by the switches

simultaneously accessing their local memories? To estimate this, we draw

on power consumption figures for available memory chips. Recently

announced 64K static RAMS implemented in CMOS technology have a power

consumption of 10 11W in standby mode and 15 - 200 mW in active mode

[MinaS2, Koni82]. The local memory of a switch is in active mode when it is

changing its current configuration setting. When not reading or writing, the

memory is in standby mode. To estimate the power consumption of the

switches, the above power consumption values will be scaled down in

accordance with the size of the switch's local memory.

The PEs are quiescent during reconfiguration. The only power

consumed by a PE is to maintain its local memory in standby mode. The

::., maximum number of good PEs per wafer is 972 (= 81 x 12). With a 64 byte

PE memory, the standby power consumption of the PEs does not exceed

64 x 8972x xlO (MW) A 75 (W)65,536

The PEs consume a negligible amount of power during reconfiguration.4

K. Now to estimate the power consumed by the switches during

reconfiguration, note that all switches in the building block fall into one of

4 three categories (see Chapter 4): unused or faulty, a connecting switch or an

image of a switch in the virtual lattice mapped into the building block. The

connecting switches do not change configuration settings from phase to

phase. Their setting is permanently fixed and serves to provide the

F . . * .

168

reconfiguration necessary to map the virtual lattice into the building block.

As a result, connecting switches are always in standby mode. In contrast,

the image switches change their setting during a reconfiguration and so

must be in active mode.

Each block contains 240 switches. Of these, 21 are image switches. The

remaining 219 switches are in standby mode. With a 9 x 9 grid of building

blocks on a wafer, there are a total of 19,440 (= 240 x 81) switches on the

wafer, 1701 (= 21 x 81) of these are image switches leaving 17,739 switches

in standby mode. Now, each switch in the building block is of degree eight

so no more than eight memory bits are required to store a switch setting.

With four settings per switch (a typical local memory size) and one register

to hold the current configuration setting, there are 40 bits of memory per

switch.

By scaling down the larger (200 mW) of the cited values for active power

consumption for the 64K memory (containing 85,536 bits), we can obtain an

approximate upper bound on the power consumed by the local memory of

the switches. The to.al power consumption of the image switches (in active

mode) does not exceed

1701 x 40 200 (mW) - 208 (mW)

65,536

While the image switches are in transition, the connecting switches are

idling along consuming no more than

17,739 x 40 10(4W) . 1 (MW)

65.536

In total, the switches consume well less than a single watt. Reconfiguring

169

does not tax the power dissipation capabilities of a wafer.

Now consider the power requirements of a CHiP processor in

computational mode. The switch lattice connections are fixed so all

switches are in standby mode. Total power consumption by the switches is

no more than

K. 19,440 x 40
6,56 x 10 (W) = 0.11 (mW)865.536

Switch power dissipation is well less than a milliwatt. This is a negligible

amount. This leaves approximately the full 3W to be consumed by the

processing elements.

It is difficult to estimate the power consumption of a processing

element without knowing all its design details and performing detailed

simulation studies. So, as with the estimates of the memory power

consumption, we will rely on reported power consumption figures for similar

devices. In particular, a team at Bell Laboratory designed and fabricated a

systolic array processor implemented in twin tub CMOS technology and with

several simple PEs per chip. They reported 10 mW / PE power dissipation

[West]. Due to the close similarities of the Bell project and the wafer scale

CHiP processor, we will adopt a 10 mW estimate for the power consumption

of the CHiP processing element.

Processing elements fall into one of three categories: active PEs which

are images of PEs in the virtual lattice, faulty PEs and PEs which are

functional but unused. With four PEs in each virtual lattice and a 9 x 9 grid

of building blocks on the wafer, there is a maximum of 324 (= 4 x 81) active

PEs per wafer. AL 10 mW per active PE, just over 3W are dissipated by the

170

active PEs. With switches consuming a negligible among of power, the target

power dissipation of 3W is (approximately) met as long as the faulty and

unused PEs consume no power.

Faulty PEj pose no problems. They can be completely disconnected

from the lattice and from the power supply by laser trimming or fuse

blowing. No power need be consumed by any faulty PE.

On the average, there will be a large number of fully functional but

unused PEs. Many of the building blocks will contain more than the

minimum number (four) of PEs required to host the virtual lattice. The

extra PEs in each block will not be used. Of the 972 (= 12 x 81) PEs on the

wafer, approximately 65% are functional. With 324 active PEs, this leaves

972 x 0.65 - 324 s 300 functional but unused PEs. If each of these consumed

10 mW, the total power consumption of the wafer would double. This is

unacceptable.

Unlike faulty PEs, it is undesirable to disconnect the functional but

unused PEs. Laser trimming (or fuse blowing) physically severes the links to

a PE. This is irreversible. Once a PE is disconnected, it can not be

reconnected. During the lifetime of the machine, some PEs will undoubtedly

fail. We would like to keep the unused PEs in reserve so they can be

switched in to take the place of a PE that has failed. If functional but unused

PEs arc permanently disconnected from the lattice during the initial

configuration of a building block into a virtual lattice then the block is left

without any redundant PEs. It has no fault tolerance. The failure of a single

PE renders the building block faulty which in turn causes the entire column

to be excluded. Without fault tolerance, a single faulty transistor within a PE

I-

171

would cause the loss of an entire column of blocks. This is clearly an

undisirable situation.

What is required is a programmable power dowr capability. The

controller of the CHiP processor must be able to power down a PE so that it

consumes negligible power. If in the future, the PE is needed, the controller

must be able to power it back up so it can be switched into the virtual

lattice. The activation of any PE is programmed by the controller. One

mechanism for implementing programmable power down is outlined below.

The technique described applies to nMOS technology, but similar methods

can be used for PEs implemented in CMOS [West].

Power is drawn when there exists a closed circuit between the power

supply and ground. Circuits are opened and closed by transfer gates. If all

transfer gates are open ("off"), essentially no power is consumed. With any

enhancement mode transfer gate (Figure 5.7.1), the gate is turned on when

the potential across the gate and the channel exceeds the threshold voltage,

Vt ,of the device. The channel is at the same potential as the substrate, V.,

which is typically kept near zero volts. In other words, the gate turns on

when

V9 - V= Vt

Normally all PEs are fabricated on the same substrate so all transfer

gates have the same channel potential. However, this need not be the case.

Each PE can be fabricated in its own separate tub (Figure 5.7.2). The tubs of

the different PEs are electrically isolated from one another and hence can

be maintained at separate aid independent voltages. Setting the value of

172

V. 0 for a particular PE results in normal operation of the PE. Gates

turn on and off for Vg - Vt. But by raising V. to a high voltage (e.g. $ Vdd)

prohibits the gate from turning on. V. - V. can not exceed the threshold

voltage so all gates in the tub remain off. Consequently, the PE is "shut off"

and consumes only the negligible amount of power required to maintain the

tub at the high potential.

To selectively change the V. potential of a PE, there must be a

selection mechanism controlled by the CHiP controller (Figure 5.7.2). By

addressing the PE via the select lines, the controller can choose the tub

potential for each individual PE. Note that the switching circuit between V.

and the high / low voltage input must be low impedance. There must be

little voltage drop across the switch since this results in reducing the V.

potential. Furthermore, it is necessary that the switch provides a steady and

stable V., potential; it must not pick up noise from surrounding circuitry.

b) Skeleton Routing

There are a number of signals common to all processing elements and

switches. The set of wires that must be routed to each and every component

on the wafer is termed the skeleton. It is the "backbone" of the CHiP

processor and provides the power and timing signals plus control and

interrupt signals from the CHiP controller. Through the skeleton, the

individual components are synchronized, started / stopped and made to

function as a harmonious group rather than a cacophony of separate

devices.

1 173

vs
Figure 5.7.1 - Enhancement Mode Transfer Gate with

Reference Voltages

174

P E Tu b

Select

Figure 5.7.2 - Implementation of Programmable
Power Down Mechanism

V

175

The skeleton unifies the individual components by sending to every

component the same set of control and synchroniz-tion signals. This

unification is an architectural plus but also an implementation problem. The

need to string one set of wires through all components on the wafer

introduces problems of wiring integrity, wire routing and signal skew. These

will be considered below.

The wiring of the skeleton must be highly reliable. A component with a

broken or incomplete connection to the skeleton is faulty. Extremely high

wire reliability can be achieved by patterning wide wires with large spacing

between them. Making a wire wider than a defect makes it impervious to

the occurrence of defects; a defect can not cause a wire beak.

Furthermore, increasing the spacing between wires reduces the chances of

a short between two adjacent wires. Experience with prototype wafer scale

systems at Lincoln Laboratory has shown that metal wires can be run the

entire length of a 3" wafer with 100% wire intogrity [Chap]. No wire faults

have been encountered.

An additional source of difficulty is the topological problem of routing

the skeleton connection to all components. The wafer surface is fairly

tightly packed with PEs and switches. Between all components runs

datapath wires leaving no wiring channels that are completely unused on all

wiring levels. Additionally, this problem appears to be exacberated by the

extra large width and spacing of the skeleton wires. Even a small number of

skeleton wires forms a wide bus.

176

A solution to this problem is to use the second level of metal

interconnection almost exclusively for skeleton routing. Datapaths and

switches use only the lower three wiring levels. The PEs can make limited

use of the upper level for short, local wires contained within the PE itself.

This leaves the uppermost level free for the routing of the skeleton. The

wires of the skeleton can run overtop the datapaths, switches and PEs. (In

practice, one may need to restrict the overlap of some lines to prevent

faults from having global effect. For instance, if an interrupt line from the

CHiP controller was shorted to a ground line on a lower level, the entire

interrupt line could be disabled.)

The wide wires of the skeleton are well suited to the "rough terrain"

found on the uppermost level of interconnection. The design rules for upper

metal levels typically req: 3 wider wires to reliably traverse the "hills and

valleys" left by the patterning of lower levels. The width and spacing of the

skeleton wires meets and exceeds these requirements.

c) Clocking

The wires of the skeleton are extremely long compared to all other

wires on the wafer. The longest wire between PEs is on the order of the edge

length of a PE, less than 2 mm, and the maximum wire length within a PE is

of similar length. The skeleton wires must traverse the entire length of the

wafer, about 4". The signal propagation time in the skeleton is significantly

longer than the signals delays within or between individual components.

More importantly, there is a large amount of signal skew - a signal (which

originates at a single point on the wafer edge) arrives at different

components at different times. Components close to the origin of the signal

177

receive it sooner than those farther away. Furthermore, because of the long

propagation time, the amount of skew can be large compared to the cycle

time of the PEs. Thus it is impossible to exactly synchronize the

components from a common source [Seit79].

This same problem is encountered with programming the lattice. The

switch lattice may be configured so that there are long paths of switches

between some PEs and short paths between others. This introduces

programming difficulties. To maintain synchronous operation, the delay

through the longest path must be computed and wait instructions inserted

into the programs of the PEs to synchronize the fast and slow

communications paths. This further complicates the already difficult

problem of programming a parallel machine.

A solution to this timing problem is for the PEs to be locally

synchronous but globally asynchronous. Circuits within each PE run

synchronously off a common and locally generated clock. However,

communication between PEs is asynchronous. PEs must signal to exchange

data. No PE is allowed to make assumptions about the timing of other PEs.

This asynchrony also applies to the start / interrupt signals from the CHiP

controller. Some PEs may start before others, but the signalling protocol

forces the early starting PEs to wait for the late starting ones 'Cuny62].

C

C,

It

178

CHAPTER 6

TESTING CiP PROCESSORS

As systems-on-a-chip become larger and more complex, efficient and

complete testing bec,mes an increasingly difficult problem. The number of

possible faults increases and access to internal on-chip test points is

increasingly costly and difficult. This difficulty is particularly acute for the

current generation of microprocessors. Their complexity of operation

combined with their large number of gates poses difficult testing problems.

In particular, wafer scale C-iP processors will be an order of magnitude

more complex than any other system ever fabricated on a single piece of

silicon. This raises the question of their testability.

In this chapter it will be shown that CHiP processors can be efficiently

tested. A key to limiting the complexity of the testing problem is

modularity. The magnitude of the testing problem can be substantially

reduced if a large and complex device can bc divided into subsections that

can be independently tested. CIIill machines have a highly modular design;

they are composed of identical and independent processing clcrncnts and

switehcs. In addition, the prograniniable switch lattice provides flexible and

fault tolerant access to t'. e cornporents of the I.dt'c. Furthermorc,, each of

the individual P'Es and switches contain only a modest number of gates so

L/

,I

AD-Ri21 886 WAFER SCALE INTEGRATION OF PARALLEL PROCESSORS(U)3/
PURDUE UNIV LAFAYETTE IN DEPT OF COMPUTER SCIENCES
K S HEDLUND NOV 82 CSD-TR-411 N8B8i4-88-K-G816

UNCLASSIFIED F/G 9/2 N

MIESh INDhi

1 .1 0 Im" e I

Ill II 18
11.25 11.4 11.6

MICROCOPY RESOLUTION TEST CHART
*ATiota. BlaAu oF saANRS - joa) - A

17179

designing switches and PEs to be easily testable is a manageable problem.

Thcse factors contribute to the testability of CHiP machines.

Although CHIP machines are testable (a claim that will be proved later

in this chapter), the problem is non-trivial. First, a complete CHiP machine

is a very large collection of gates and transistors. Modularity breaks this

complexity into smaller pieces, but still the number of gates to test is

enormous. As shown in the previous chapters, on the order of 1000

*, processing elements and 20,000 switches can be fabricated on a single

'wafer. The size and scale of the testing problem is formidable.

Secondly, the simplest way to test a collection of objects is to

individually test each object. But, in a CHiP machine, the only access to the

lattice is through the switches on the lattice edge. No other components can

be directly reached. In particular, the components in the center of the

lattice can be reached only by traversing a long path of switches. The mesh

structure of CHiP machines allows direct communication only from

component to component, This does not facilitate testing.

To increase accessibility, it is possible to put bonding pads at each

component. An external testing device can probe the pads to individually

test each component. This is called probe based testing. PEs are much larger

than bonding pads so their addition increases the PE area by only a small

amount.

However, switches are quite simple and small. Typical switch

dimensions are 250 x 250 /sm (in A = 1 /tm technology). Placing bonding pads

around the periphery of the switch introduces approximately thirteen

access points and more than quadruples its area. As the size of transistors

180

continues to decrease, switches will become smaller but the area of a

bonding pad will not decrease. Thus the overhead due to the bonding pads

will increase with progress in semiconductor technology. Additionally, the

presence of bonding pads around the periphery of the switch causes severe

routing problems for the datapaths. As a result of these difficulties, it is

impractical to put bonding pads for testing at the switches. Switches can not

be directly accessed by a testing device. They must be indirectly tested.

Indirect testing means a component is accessed only by going through a

path of intervening switch (see Figure 6.0. 1).

The testing process requires two actors: the device being tested and the

testing device that controls and performs the tests. With indirect testing,

there must be a path of switches with a testing device on one end and the

device being tested on the other end. The switch path connects the two

actors and establishes a communication path over which testing is

performed. However, switches are passive. They serve only to connect two

incident datapaths. As a resu"., the actors can not be switches. Actors must

be either PEs or an external testing device.

In general, some of the switches along a test path switches will also be

untested. Any of the untested components on the path may be faulty. As a

result, if a Lest fails, the cause of the failure is not pinpointed by a single

Lest. As an additional complication, more than one component on the path

may be faulty. To narrow down the possible sources of failure, additional

tests on different but intersecting paths must be performed. However, these

paths may in turn introduce new untested components. If one of these new

tests fails, additional paths must be tried, and so on. Selecting sequences of

181

0 00 0

a~o 0

0000

i0 0 0,(0 0

Figure 8.0.1 - Indirect Testing via a Path of Switches

F'

182

0 0s, 0 0

0 0 0

0 0 0 0 0

Figure 6.0.2 - Testing with the Reflective Switch

o " , °. ° % - * * **o. ° - °o.o.%-o - . *. * j o -.° , ' ' . ' . ° " * o - . o. , , , . . - ° . . • - i i . ° . ° .° - - °

. . . -
.

- - -- -. ' ,, ... o . ", ..&,, '.oq. -° . .. -' -" -. . .

* 183

test paths to deduce the location of faulty components is non-trivial.

In fact, indirect testing in the worst case requires performing an

exponential number of tests in order to competely test the lattice. For

example, suppose that there is only one functional path in the lattice. All

other switches and PEs not on the indicated path are faulty. Therefore any

test performed on any path other than the single functional path will fail.

The only way of testing any of the components on the functional path is to

attempt a test along the good path. Since there are an exponential number

of different paths in the lattice and the single good path may be randomly

chosen, exhaustive search is the only means of locating the functional path.

The cause of this exponential explosion is that it is impossible to

incrementally test the components of the lattice. Ideally, we would like to

-be able to test one component at a time. Starting by testing (with an

external testing device) one switch at the lattice edge, testing would fan

outward from this one point. In each step, all neighboring components are

tested.

The passive switch prevents incremental testing. Since a switch can not

" be an actor, a PE must be at one end of the test path. This requires multiple

components in the path so that a test along the path does not test a single

component but several components simultaneously. If the test succeeds

then all components along the path are known to be good. However,

difficulties arise when the test fails - we do not know which component in the

path is faulty. There may even be several bad components. Exponential

explosion results from this lack of information that can be inferred from an

unsuccessful test. A solution presented below is to redesign the switches to

be active. L

. .°

,WX

184

What is required in order to be able to incrementally test switches? A

switch is tested by specifying its configuration setting and then verifying

that the switch can successfully transmit a preselected set of bit patterns.

This set includes patterns that check that no data lines are open, shorted or

capacitively coupled. For example (see Figure 6.0.2), the NS setting of

switch S1 is tested by a testing device (TD) to its North. The testing device

sends each signal of the set through switch S, waits for the actor on the

other end of the test path to return the signal and verifies that the returned

signal matches the original one. This sequence is repeated for each pattern

in the set. Thus if switch S2 could reflect back a signal coming from the

North. S could be tested in isolation. This is called the rectue iutch.

One control line in the datapath is used to put switches into reflect

mode. Note that to correctly reflect the signal, the switch must latch the

incoming data, wait for the datapath lines to become quiescent and then

return the latched data.

'With every switch in the lattice being a reflective switch, it is possible to

step through the lattice testing one switch at a time. The testing problem is

reduced to a linear time algorithm. For example (see Figure 6.0.2), the

following steps incrementally test the components on the path from the

testing device to the East port of the PE:

1) S, reflect North - the datapath between TD and S, is tested.

2) S, set to NS and So reflects North - test the NS setting of SI.

185

3) S, set to NS and S to NW - this completes the connection to the East

port of the PE testing the NW setting of Sg.

A longer path of switches can be tested simply by repeating step two.

To implement the reflection mechanism, each switch has added to it

circuitry used solely for testing. Each switch has two components: its

switching mechanism and its reflection circuitry. This reflection circuitry is

not independontly tested. A switch is considered good only if both the

switching mechanism and the reflection circuitry are functional. Thus some

switches will be lost due to faults in the testing circuitry even when the

switching mechanism is functional. But since the reflection mechanism is

relatively simple, faults in it should be infrequent. On the other hand, this

mutually coupling between the two components of the switch greatly

simplifies and speeds the testing process. The loss of a few switches is an

acceptable price to pay.

Note that if S due to internal faults can not reflect back a signal

(Figure 6.0.2), the test of the NS setting of S, will fall. The internal switching

mechanism of S, may be functional but if the device to which it will

communicate if faulty then so is S1. All three settings of S1 that connect to

S. (NS, SE and SW) are termed contecituity faults.

To recapitulate, there are two approaches to lattice testing. Both

require indirect testing. One uses passive switches, and in the worst cast

requires and exponential number of tests to completely test the lattice. The

other method employs a reflective switch. The added switch complexity

causes a slight reduction in switch yield, but allows incremental testing of

components. The entire lattice can be tested in linear time. Both

* . .

'0

186

approaches have their applications.

Note that the example of worst case exponential behavior with passive

switches necessitated a large number of faulty components. There was only

a single functional path in the lattice. But in practice, switches will have high

yield. Most tests will succeed, not fail, so exponential explosion will be

avoided. Furthermore, it is desirable to keep switches simple (see Chapter

4). This enhances their yield since there are fewer devices to fail in a simple

switch than in a complex one. Additionally, the simpler switches occupy less

area leaving more room on a chip for PEs.

As a result, the passive switch approach is desirable for small lattices.

For example, section 2.5 considers embedding a 2 x 2 lattice within a 3 x 2.

Lattices of this size are small enough to allow even exponential testing

(although it should be extremely rare). The benefits derived from the

passive switch outway the need for a reduced bound on testing time.

On the other hand, a wafer scale CHiP processor presents a testing

problem of far greater magnitude. With over 20,000 components per wafer,

efficient testing is a necessity not a luxury. Reflective switches are

required. This insures linear time testing at a cost of some switch yield and

switch area. The advantages of wafer scale integration are not without their

costs.

In the following sections, we will briefly explore the design of switches

and PEs for testability and investigate algorithms for testing a lattice with

passive switches.

- , .-- " ", ' - .-. , .4" . '-" o , -' . - - I -. . . . , , , f : , . - .° . . . -. -. .

187

1. Deign for Teutadility

A primary restriction on CHiP processors is that the number of

connections between PEs should be kept to a minimum. The area of a switch

is proportional to the square of the number of wires in the datapath. To

avoid the area of a CHP lattice being dominated by inter PE wiring, the

number of connections between PEs must be limited. Since testing is

performed through the switch lattice, we need to be able to test PEs with

using only a small number (e.g. 8-16) of connections between the PE being

tested and the testing device.

However, this requirement is not unique. Designers of conventional

single chip microprocessor and other LSI devices need to devote as few of

the scarce bonding pads to testing as possible. This is the same

requirement as for CHIP machines; the number of connections between the

processor and the testing device must be minimized through use of these

techniques.

As a result, standard testing techniques and design for testability

principles developed for conventional microprocessors [DasG78, Haye8O,

Will73, WiUl79] carry over to the testing of the PEs of CHiP processors. Use of

scan in / scan out shift registers, signature analysis, etc. can be

incorporated into the design of PEs to compress the output of the testing

process. The number of datapath lines required to carry this information is

minimized.

Furthermore, the PEs of a CHiP machine are quite simple in

comparison to the current generation of advanced microprocessors (see

Chapter 4). Therefore the problem of generating test sequences to
r
Li

188

throughly exercise a PE is a comparatively simple (although certainly non-

trivial) problem. Consequently, it will be assumed that the problem of

testing individual PEs can be solved by conventional techniques.

Additionally, switches are considerable simpler than PEs. Their testing

poses no difficulties.

2. Model of Lattice TesUng

In this section an abstract model of lattice testing with passive switches

is presented. This model formalizes the mechanics of the testing process so

that proofs of testability can be presented. Furthermore, the essential

aspects of testing are identified and isolated so that the testing process can

be examined without being mired in detail.

Due to the modularity of CHiP processors and the independence of the

components, testing splits into two separate problems:

* testing individual components

0 testing the lattice as a whole.

In the remainder of this chapter, we concentrate only on the second

problem, that of testing the lattice. We assume there are well-defined

sequences of testing steps to thoroughly test the individual processing

elements and switches. The specific sequences depend intimately on the

design details of the components; this will not be considered further.

We present a model of the problem of testing lattices of PEs and

switches. The model specifies:

',-, .- ...:,..-.'.?.-...,..,-...-..... ,.... <....... ,... .:,,.-..... ,.-.-.. ---... .. .

189

* components of the lattice which must be tested

* requirements for a complete test

° goals of the testing procedure

The model is at a high level of abstraction. It does not deal with responses

to specific test patterns, the mechanisms of performing the testing, or

details of generating the test data. These factors will vary greatly with

changes in the implementation details of a specific CHIP machine. The

resulting model achieves independence frorp the myriad of design details

underlying the overall machine architecture. It captures the essential

problems of testing complex lattices of PEs and switches without being tied

down to specific implementations of the components. This allows formal

descriptions of testing algorithms without excessive and obfuscating detail.

a) Defnitions

In this section certain key concepts concerning testing and the lattice

structure are precisely defined. This replaces intuitive notions of testing

and testability with sharply defined and delimited concepts. Through this

approach, the fault coverage of a testing procedure can be formally

determined, and the correctness of a testing algorithm can be proven.

There are two actors in the testing process:

a) Processing element being tested, also referred to as the unit under

test (UUT).

b) Testing device (TD). This controls the UUT, applies test signal to the

UUT, monitors the response and is responsible for deciding if the UUT is

functional or faulty.

190

The testing device may be external to the lattice - a separate and

independent device. It may be special purpose testing equipment such as a

programmable logic analyzer or a general purpose computing device such

as the CHiP controller. An external device can access the component being

tested directly by probing the bonding pads of the UUT. Indirect access is

also possible. A subset of the switches on the lattice edge, gatew ys , are

connected to bonding pads. The external device can access the UUT via a

path of switches originating at a gateway.

In addition, the testing device can be another PE in the lattice. In this

case, a small subset of the PEs are initially tested by an external testing

device. The PEs found to be functional are used to test their neighbors

which in turn test other PEs, etc. This is a self testing strategy which is

initiated by a limited amount of external testing.

A single testing step consists of three distinct phases:

1) Generation of test data - the input test pattern to the UUT and the

correct response.

2) Application of the input test pattern to the UUT.

3) Evaluation of the response. This most commonly consists of

comparing the response to the known, correct value. Other

characterizations of the response such as number of l's (bit count) and

number of transitions from 0 to 1 (transition count) can also be used.

A testing step is an exchange of signals between the testing device and the

UUT. rhe TD initiates the testing stop by presenting an input pattern to the

UUT which is under the control of the testing device. In addition to data, the

- -- 181.-

input pattern may include instructions for the UUT to execute. Thus a

typical testing step starts with tho TD downline loading the UUT with a small

program segment and input data. The UUT executes the code while the TID

monitors the output and halts the UUT at the completion of the testing step.

An individual testing step can verify that the UUT correctly executes a

single program segment. A test of a component is a sequence of testing

steps which thoroughly exercises the component and provides adequate

fault coverage. A test is successful only if every testing step succeeds.

Some basic lattice terminology will be introduced. Processing

elements have a port at each compass point, NSEW, through which the PE

can communicate with its neighbors. Each switch is also connected to its

four neighbors. A conflguration setting specifies which pair of incident

datapaths the switch will connect. There, are six possible switch settings

(NW, NE, SW, SE, NS, EW). Each setting is denoted by the pair of compass

points that are connected., Lattice elements are matrix numbered with zero

origin. A path through the lattice is a connected sequence of switch settings

with, optionally, a port on either end. The components of the path are the

individual switch settings and ports. When the specific switch settings are

unimportant, a "generic" path as in Figure 6.2.1 will be specified where the

setting of switch S is assumed to be the one required to connect path

segment P to PE[i,j]g.

b) Testable Components

Datapaths are not explicitly tested but rather arc tested in conjunction

with switch testing. A fault in a datapath is reflected by faults in the

192

i
I ~

Figure 6.2.1 - Example of a Generic Path

i

1.

F77

193

p.-. components connected to the datapath. For example the datapath fault

results in faults in PEE and the NW, EW and SW settings of switch SW.

An intrinsic fault is caused by a defect within the lattice element which

causes erroneous behavior. Broken wires or shorted transistors are

examples. Any component incident upon an intrinsic fault is also faulty. If

the East port of a PE is faulty, so is the West side of the adjacent switch.

Settings SNw, SE and SSE are termed connectivity faults since they are

attached to an intrinsic fault.

Each of the six switch settings are considered independent and can be

individually good or bad. Analogously, ports are independent. For any given

PE, some of its ports can be functional and others faulty.

Both switche, and PEs have internal mechanisms in addition to their

observable communication behavior. A switch must be able to latch new

settings sent to it and select amongst those settings stored in its local

memory. A PE consists of a processor which interprets the PE's instruction

set and four ports. A PE must correctly execute its full instruction set and

have an fault free memory. A failure in the internal mechanism of a switch

or the processor of a PE causes all its settings or ports to be considered

faulty. Each individual component is good only if the internal mechanism is

fully functional. There is no point to communicating with a faulty PE nor

using a switch which can not reliably select its setting.

Testing the internal mechanism of PEs and switches will be implicitly

assumed. When "test West port" is specified in a testing algorithm, it is

assumed that the first port of a PE that is tested also includes a full test of

the internal mechanism of the I'E; similarly for switches. As a result, we can

194

be concerned with only testing ports and switch settings.

Switches are not directly accessible from testing devices. A switch

setting is tested by establishing a path between two PEs (or external testing

devices) and performing the sequence of testing steps required to fully

exercise the switch and the datapath. In general, a path may contain more

than one untested switch setting. Consequently, a failure of the test along a

path will not necessarily pinpoint the faulty component. In fact, there may

be more than one defective device on the path. Hence, a test can, in

general, verify the functionality of components but an unsuccessful test

required that tests along additional paths be performed to locate the

fault(s). In summary,

a switch setting is functional if it is on the path of a successful test

a port can communicate if it is on the terminating end of a path which

is successfully tested. A port is functional if it can communicate and

the internal mechanism of the PE functions correctly. To conclude that

a port can not communicate, it must be impossible to successfully test

the port via all three access routes into the port (see Figure 6.2.2). If a

test along any one of these access routes is good then the port is good.

In general, an unsuccessful test along a path with more than one

untested component does not provide any new information on the status of

the untested components. Any combination of untested components of the

path may be faulty. A single test does not separate the possible

combinations of faults. One important example is:

195

Figure 6.2.2 - Three Paths Required to Test a Port

196

p 1

Figure 6.2.3 -Testing a Port

197

Lemma 2.1a - Given the path in Figure 6.2.3 with path segment

P1 S" S'NS good and both SN, PElE untested, the status of S~n is

determined by the test along the path

P = P1 S" S'NS SNW PEE

independently of the status of PE1E.

Proof -

Case 1 - PEig is good.

If SN is good then all components of path P are good and the test along

P succeeds. Otherwise the test fails.

Case 2 - PE1E is bad.

The test along path P will fail. This is correct since StW is a connectivity

fault.

QED

The above lemma is easily generalized to

a) any port of the PE

b) allowing S' to occupy any position adjacent to S and S" any position

adjacent to S'

This generalization is stated somewhat informally:

Lemma 2.1 - Any switch directly connected to a. port can be tested

independently of the status of the port if there exists a good path from

a gateway to the switch.

198

c) Goals of a Testing Procedure

In a CHiP machine, every component. must be fully operational.

However, the switches and PEs fabricated on the wafer may be only partially

functional. In a PE, the processor may work but one of the ports may be

dysfunctional. Also a switch may have only a (proper) subset of its settings

working correctly.

Partially functional components may serve a useful function in a fault

tolerant machines although they will not be an integral part of the virtual

CHiP lattice. A partially functional switch may serve as a connective switch

providing a path between two fully functional components. Additionally, a

PE with at least two good ports may be used in the self testing of the lattice.

As a result, a go/no-go test for PEs and switches is insufficient. The

goal of any testing procedure is to provide fault location at the component

level. It is necessary to know which settings of every switch and ports of

every PE are good even though the device may only be partially functional.

Below the component level, fault detection is sufficient. For example, if

a switch setting is bad, it is not necessary to know which particular

transistor(s) are defective. If the processor of a PE is faulty, knowing

whether the memory, datapath or control logic is the culprit is unimportant.

Furthermore, the testing algorithm must provide complete

component-level resolution. It is unacceptable to have otherwise fuLctional

components reported as faulty due to limitations of the testing algorithm in

resolving the source of errors.

... ...~~ ~~~ ~ ~ ~ ~-. ' ' .' ,- . , -, - . . .,,• -- .. ._ ... _- . _ _,_. ' .. ' . , °"- ,.

199

In addition to providing reliable, component-level fault location, any

testing algorithm must be efficient. A wafer scale CHiP machine is a very

large collection of components. A processor fabricated on a 4" wafer

consists of over 20,000 switches and 900 PEs. An inefficient testing

algorithm will be computationally intractable.

3. LatUice Testing

Given an arbitrary port in the lattice, what are the requirements for

testing it? First, the port must be connected to a testing device. An

external testing device can access the port via a functional path from a

gateway to the port. The port may also be tested by another PE in the

lattice. But this PE doing the testing must be previously tested. So the

testing PE must have a functional path to a gateway or to another PE which

in turn has a path to a gateway or ... As a result, only regions of the lattice

which are connected to a gateway can be tested but with the connecting

path allowed to pass through intervening PEs. If a component is not

accessible from a gateway, it is untestable and hence considered faulty.

A region may be functional but if it is disconnected from the remainder

of the lattice, there is no way to use the region; it can not communicate with

the other PEe. So this testing assumption that inaccessible regions are

faulty does not cause the loss of otherwise usable PEs.

Secondly, it would be ideal if all the components on the path to the

gateway were known to be functional. A successful test verifies the

functionality of all components on the path. But an unsuccessful test, in

general, fails to pinpoint the source of the failure. The fault can be located

Cl

oD

LI

.o.

200

by a single test only if there is exactly one untested component on the path.

Otherwise, additional tests (perhaps a large number) are required to isolate

the defective component.

However, testing a port and testing the switch to which it is connected

can not be separated. A port can not be accessed independently of its

switch. Similarly, the West side of switch S can be tested only by being on a

path that terminates at the PE. The switch and the port are mutually

coupled with respect to testing. They must be simultaneously tested.

Because of this coupling, the primitive unit that will be tested is a port

pair, two adjacent ports and the intervening switch (Figure 6.3.1). A single

port and its switch could have been chosen but, as will be seen, testing can

proceed by pairs of ports as easily as individual ports.

What are the requirements to be able to test a port pair? To test ports

PEE and PE2W through S' (see Figure 6.3.1), there must be a functional path

from S' to a gateway, and S must complete the connection from S' to each

port. When these two conditions are met, we say that S' is a hook since it

allows the testing device to latch onto the port pair for testing. In the worst

case (e.g. a faulty port), testing a port requires that all three access routes

into the port be attempted. So, both S' and S" must be hooks for the port

pair. We say S' and S" are a hook pair for the port pair. Furthermore, since

both the North and South sides of switch S must be accessible from a

gatcway in order to fully test the ports, the existince of a hook pair is the

mininum requirement for completely testing a port pair.

201

ri sLS

Pi

Fgr W-12'1

r Figure 6.3.1 - Testing a Port Par

202

*1" The following algorithm can be used to test a port pair.

. Port Pair Test Algorithm

Input - a port pair (see Figure 6.3.1) with a hook pair S' - S" and test

paths to a gateway P1 and P2.

Output - status of all components in the port pair.

Remarks - Initially, all components are marked FAULTY. If a test

succeeds, all components on the test path are marked GOOD.

Mark all components FAULTY.

T1: test SNS via path P' S SNS S" P"

(The following paths all use the segments P' S' or P" S". They will be

omitted for clarity.)

T2: test PElE via SNW

T3: test PEl via SSW

T4: test PE2w via SNZ

TO: test PE2w via Ssz

TO: test along path PElE SEW PE2w

Test T, exercises the NS setting of switch S which is connected to the

testing device via path P' and switch S' and path P" and switch S". The four

test paths in T2 - TI have only one connection to the testing device. The

other termination of the path is a port.

"'~~~~~~~~~~~ ~."-". ' -. . .' : i -,_. ; . ; _

203

After the completion of tests T, - T5, the only untested component is the

EW setting of switch S. This test is qualitatively different from the others

since it is by necessity a self test; the two ports must test the setting

themselves. Self testing is possible only if both ports are functional. The

code for test To is downline loaded into each PE via one of the functional

paths found in tests T2 - T5, test Te is performed and the PEs report the

results back to the testing device.

Theorem - If S' and S" are a hook pair for R (with test paths P' and P"

respectively, see Figure 6.3.1) then the PE Pair algorithm tests

PEIE, PE2w and all settings of S, despite faults.

Proof - SNS is tested since the path P' S' SNS S" P" contains only good

components except for SNS. No other components in R affect this path

so faults in other components will not alter the testability of SNS.

By Lemma 1, SNw, SS. SNE and SSE are tested regardless of the status of

the incident port. No other components in R can affect the test paths

used to test these settings so SNW, SSW, SNE and SSE are tested despite

faults in the port pair.

We must show that PEt1, SEw and PE2W can be tested despite faults in R.

Consider the situation immediately before To in the algoritlm, and let P

be the path PEt5 Sw PE2w.

Case 1 - in the previous testing steps T, - Tr, we found both ports to be

good. We need only test SEW- Path P tests SEW since the other two

components in the path arc good.

r-(

204

Case 2 - One port is good and the other could not be accessed by either

of the paths attempted. Assume 1 .1 is the port known Lo L good.

Now, path P tests SEW and PE2w simultaneously since we have tried both

,- other access routes into PE2w (i.e. SNW and Ssw). If this one fails then

PE2w is faulty and SE is a connectivity fault.

Case 3 - Neither port has been accessed by either of the paths

attempted. A test along P tests all three components simultaneously.

SEw is good only if both PE1I and PE2w are good. This the last access

route into either PE so this is the last chance to be able to

communicate with either port. Either all three components are good or

all three are bad.

QED

Now consider testing the entire region surrounding a PE - a PE square

(see Figure 6.3.2). The "internal" settings of the square are tested by

combining four port pair tests as in Figure 6.3.5. Thus forming a cross test.

Theorem - If each pair of corner switches, C1 - C4 (see Figure 6.3.6), is a

hook pair for the intervening port pair and P1 - P4 are functional paths

K! to the gateway for the corresponding corner switch in which

a) do not intersect the PE squareF
b) do not pairwisc intersect

I Pn P2 = P2 n P3 = 1'3 P 4 = P4 () P =

Lhen the intcrnal settings of a PE square can be completely tested.

I.
a.

205

C, 0 0 sl Cl

El So E Qc3 E

Figure 6.3.2 - Testing a PE Square

206

Proof - Apply the port pair test algorithm to the four port pairs. By the

previous theorem and the assumption that there are hook pairs for each

", port pair, this tests all four ports of the PE and the four associated switches.

All that remains to test is the inside settings of the four corner switches C1 -

C4. By symmetry, we need consider only one of these. Choose Clsz. If there

are functional test paths from both the West side of switch S2 and the North

side of Si. Cls can be tested via these paths. If neither switch has a test

path, CISE is untestable and hence faulty. Finally, assume there is no test

path from one switch. Let it be Si. As a result, it is impossible to test any

setting of C1 incident upon the North side of S. So CisE is faulty.

How are the test paths from the switches found? Consider switch S2. If

there is a good connection from S2 to C2, path P2 suffices. Otherwise one of

the PEs to the North or South of switch S2 must be the terminating point of

a path. If neither of these are functional then the path from Ci runs into a

dead end and so in untestable and faulty. Similarly for Si. There are three

possible paths from each of Si and S2 so at most nine paths need be tested.

QED

Note that when PE square tests of adjacent squares are composed, the

untested switch settings are precisely those that are tested by the adjacent

PE squares. The "external" switch settings of a PE square are precisely the

"internal" seLtings of a neighboring square. Conscquently, the cross tests

can be composed leaving only the setting on the ouLer edge untested. But it

is the outermost edge of switches which is accessible to the external testing

equipment. Thus the entire lattice can be tested.

207

Theorem - Given any lattice, if all the corner switches are hook pairs for

the four neighboring PE pairs with non-intersecting test paths to a

gateway, the lattice can be completely tested, despite faults.

Proof - Consider a single square. By the above theorem, the square is

completely tested (despite faults) except for the corner switches.

Consider the four neighboring squares which form a 5 by 5 lattice.

Perform cross tests independently at each of the four squares. The

corner square S at the center of the lattice has all right angle settings

tested since it is a member of all four squares. We must test SNS, SEW.

Consider SWNs. If there are test paths (non-intersecting) from SN and

SWs then SNS can obviously be tested. Otherwise, there is no test patn

from at least one direction North or South. Let it be North. Then SN is

dead by the definition of the testability of a switch and SNS is a

connectivity fault.

Similarly for SEW. Hence SW can be completely tested. Consequently,

vhen composing groups of four squares, all components are completely

tested except for the corner switches on the edge of the region.

We could similarly show that composing four of the 5 by 5 regions yield

a 9 by 9 region with all components completely tested except for the

corner switches on the edge of the region. By induction, we can show

this holds for any 4n+ 1 by 4n+ 1 lattice segment.

Clearly, the corner switches on the edge of a chip can be tested by the

external testing device and the neighboring switches (which are already

completely tested by the cross tests). Hence, any 4n+1 by 4n+1 lattice

is completely testable.

-!C

I)
208

If a lattice is of dimension m < 4n1 +1 for some n1 , it is clear that it can

be tested in the same manner we would test a 4n+1 by 4n+1 lattice but

with the external testing device filling in for the PEs of the larger lattice

*3 which fall outside the boundaries of the smaller m by m lattice.

Conclusion - a lattice of any size can be tested.

* QED

So far, we have shown that if we have hook pairs then the lattice can be

tested. How do we determine that S' and S" are a hook pair? Just as testing

ports and their adjacent switches are mutually coupled, so are checking for

a hook pair and testing the port pair. The existence of functional paths P'

and P" can be determined independently of the status of the port pair.

However, the connection from S' and S" to S must obviously involve S.

Additionally, completing the connection from S to the ports required that all

components of the port pair are involved in the hook pair test. If portions of

the port pair are faulty. we may not know whether or not we have a hook

pair. This makes it impossible to know if the fault is at the S' - S or S" - S

connection or within the port pair. In conclusion, testing for a hook pair and

testing the port pair are inseparable.

Algorithm - locating a Hook Pair

Input - a port pair with P' and 1" candidate paths to the lattice edge

(Occ Figurc 6.3.1).

Output - S' - S" a hook pair? YL-S/NO returned.

T,: test along the path P' S' SN. S" -"

'" 209

Cl: if successful then YES

Otherwise,

' 2 : test along the path P' S' SUL PEE

Ts: test along the path P S'SUR PEw

C2: if neither T2 nor Ts succeed then NO

T4: test along the path P" S" SLL PEE

T5: test along the path P" S" SLR PEW

Cs: if T4 or T5 succeed then YES else NO

Theorem - Given a port pair with candidate test paths P and P" which

do not intersect, the Hook Pair algorithm is a decision procedure for

the predicate

Q = (P' good) & (S' and S" are a hook pair for R) & (P" good)

Proof - A. We must show that if the algorithm returns YES then Q is true.

Consider statement C1 of the algorithm. If T, is successful then we know

P' and P" are good and we have verified that both S' and S" have a good

setting which connects the test path (P' or P") to SW. Consequently, S'

and S" are hooks for Q. By definition P' and P" do not intersect so S' and

S" are a hook pair for Q.

Consider statement C2 . If either 1'2 or .3 succeed then we know P' is

good, and we have verified that the setting of S' connecting P' and SW is

good. Consequently, S' is a hook for Q.

Similarly for T4 and T5.

4! If we reach statement C3 and either T4 or T3 succeeds then both S' and

* ...

210

S" are hooks for Q. Since P and P" do not intersect, S' and S" are a hook

pair for Q.

H3. We must show that if Q is true then the algorithm returns YES.

Assume Q is true. We then know P' and P" are good and S' and S" are

each hooks for Q. Consider S'. There must be a good setting of SW which

completes a path to either S" or a good port. There are three settings

of SW incident upon S's. The algorithm attempts paths with all three so

it will locate the complete path and one of the tests TI, T2 or Ts will

succeed. Similarly for S" so either Ta, T"4 or To will succeed.

Consequently, the algorithm must terminate at either C1 or Cs. Both of

these statements report YES.

QED

What have we accomplished so far? We have reduced the problem of

testing the lattice in the presence of faults to locating pairs of hooks. The

above theorem reduces this problem to finding pairs of non-intersecting test

paths.

test lattice < locate hook pairs < locate test paths

The first reduction is not strictly true since we have considered only the

subproblem of testing the lattice when all corner switches are hook pairs for

Lhe neighboring PE pairs. Testing a square with an incomplete set of hook

pairs wii be considered in a separate section of Liih paper.

We next examine the problem of locating all possible test pallis from a

givcn lattice element,

211

!Theorem - given a lattice element, there are only a finite number of

candidate test paths from the element.

Proof Outline - Paths do not have cycles.

At each lattice element along a path, there are only 3 choices for the

successor.

The number of lattice elements is finite.

=> the number of possible test paths < 3 '* (number of lattice

elements)

QED

In addition to being finite, the set of all candidate test paths from a

given lattice element can be listed.

Algorithm - Enumerate all candidate test paths

Outline of Method - Tree Traversal Algorithm

At each component along a path, there are three possibilities for its

successor. Faulty components or components already on the path are

not legal successors. A path terminates at any port or a switch on the

lattice edge.

The key to e.fficient testing algorithms is quickly enumerating

candidate test paths. This can be done by:

1. Testing from the edges of the lattice inward.

2. Limiting the maximum length of a test path.

212

We will show algorithms for testing without considering their efficiency.

The Hook Pair Lest applies to a given pair or Lost paths. If we

enumerate all good test paths from SW' to SW" and apply the Hook Pair

algorithm to all pairs of good test paths, we can determine if SW' and SW'

are a hook pair for R.

Algorithm - Complete PE Pair test

Given a set of good test paths from SW' (S) and SW" (S2) not

intersecting R,

for every path in S. do

for every path in S2 do

if the paths do not intersect each other then execute Hook Pair

alg

if algorithm returns YES then

S' and S" are a hook pair for R

test R by PE Pair aig

return TESTED

STOP

.

213

CHAPrR 7

CONCLUSIONS

1. kmmmy of Results

The key problem in the implementation of wafer scale integration is

structuring the wafer so that only the functional PEs are connected

together. A methodology, the two level hierarchy, that efficiently and

economically solves the structuring problem for CHiP processors has been

presented. The principle elements are the use of column exclusion with high

yield building blocks that contain redundant components. This approach

limits the performance degradation due to structuring and allows the

structuring problem to be solved with tractable computational effort.

Since the yield of building blocks must be high for the two level

hierarchy to be a practical approach, yield phenomena were investigated in

detail. A model of the integrated circuit manufacturing process was

developed that predicts circuit yield and the probability distribution of

manufacturing defects. These results were applied to the analysil of

parallel processors in which several PEs occupy a single chip. In addition.

they were used to design the building blocks meeting the requirements of

the column exclusion strategy.

214

It was shown that these building blocks can be assembled into a wafer

scale CHiP processor. With current technology, it is possible to fabricate a

wafer scale system with 250 to 300 PEs. This represents a truly large

parallel machine. Furthermore, this machine is highly robust to faults

occurring during the machine's lifetime, consumes a manageable amount of

power and can be efficiently tested.

Although the techniques for implementing wafer scale integration were

developed for CHiP processors, they can be applied to other system

composed of uniform parts. This generalization is discussed in the following

section. Furthermore, building blocks are useful on their own; they need

not be assembled into a wafer scale system. A generalization of the design

methodology used for building blocks is shown (section 3) to increase the

maximum allowable chip area and thus increase the number of components

per chip.

2. Implementation of General Wafer Scale Integration

The techniques described above for implementing wafer scale

integration are not restricted to CHiP processors. The methodology benefits

from the fact that the mechanism needed for structuring, the switch lattice,

is an integral part of the CHiP architecture. Although this simplifies the

work, it is not necessary. The method is entirely general. It can be applied

to other systems composed of uniform parts.

As long as a system can be subdivided into modular and independent

parts, the switch lattice can provide the flexible interconnection network

required to route around faulty components. The settings of the switches

. - - .. -- .- . -.. . A . -i , . , - . •.. . . . i _-.....-.

. ..

215

can be fixed. Switches can be used solely for connecting the functional

processing elements. Thus a parallel processor with a fixed interconnection

structure can be fabricated. A water scale processor with a mesh, perfect

shuffle, etc. interconnection topology can be implemented by embedding it

within a wafer scale CHiP processor. The switch lattice simply remains in a

static configuration.

Furthermore, the processing elements can be replaced by other

components to implement a wafer scale system other than a parallel

processor. For example, by replacing each PE by a 4K static RAM, a 3 Mbit

wafer scale memory can be fabricated with existing technology [Egaw79,

Lea79]. Additionally, the problems of address decoding, bit line driving, etc.

must be solved, but the basic mechanism for connecting the individual

storage modules can be based on the methodology for wafer scale CHiP

processors.

3. Restructurable Design Methodology

Previously (section 2.5b) it was shown that redundancy can

substantially reduce the manufacturing cost of a chip by increasing its

yield. This suggests that building blocks with redundant components are

useful on their own. A wafer can be scribed into the individual blocks which

can be used as components of a larger system. The yield increase due to

redundancy makes this a cost effective approach.

An alternate usage of redundancy is without changes in the fabrication

technology to increase the maximum number of gates per chip. With fixed

dLransistor sc..,, wire widLh, eLc.. the inLcgraLion level can be increased

218

through the use of redundancy and restructurable circuitry. Furthermore,

this design methodology (which was used for building blocks) can easily be

generalized to apply to any system that can be divided into independent

modules. These generalizations will be explored below.

There are three ways of increasing the number of components that can

be fabricated on a single chip: increase chip area, improve circuit design, or

reduce the size of the individual components. This work uses the first

approach. The design methodology presented allows chips of larger area to

be manufactured with acceptable yield.

What limits the size of a chip? Economics. It is prohibitively costly to

manufacture very large chips. The manufacturing cost of a chip has three

primary components.

total chip cost = processing cost + packaging cost + testing cost

As a first approximation, packaging and assembly costs are independent of

the function performed by the chip, although they will increase slightly as

the number of external connections to the chip increases. Similarly, test

costs increase much more slowly than the complexity of the chip being

tested, although sophisticated and high speed test equipment may be

required. Thus, for larger and more complex chips, the packaging and test

costs are approximately constant [Noyc77].

The cost of processing a wafer is independent of the number or type of

chips patterned on it, so chip processing cost is proportional to the number

of good chips to share the wafer cost. The cost oi a chip then depends

primarily on its yield. A typical yield curve (Figure 2.2.1) shows that yield

declines quickly with increases in area. For large chips, the number of good

217

chips drops rapidly pushing up their cost.

The exact yield at which point it is no longer feasible to manufacture a

chip depends on the actual packaging, test and wafer processing costs. But

for any fabrication process this point does exist, and it corresponds to a

specific chip area. This is the yield limit of the technology. It is not

economically feasible to fabricate chips of area larger than the yield limit.

The fact that the yield declines quickly as a function of area causes a strict

bound to be placed on the maximum allowable chip area. Exceeding this

bound results in rapidly escalating chip cost. By reducing the rate of decline

of Y, the yield limit will be extended allowing chips of larger area.

The cause of the rapid decline in yield is that a single defect renders

the chip unusable. A defect may be introduced by any of the critical

fabrication steps. It makes no difference in which step the defect is

introduced, the end result is the same - a faulty chip. Consequently, in the

yield equation (equation 2.2), there is a multiplicative effect of multiple

processing steps; each step eliminates a fraction of the chips. The situation

is analogous to tight rope walking - one slip and the game is over.

The slope of the yield curve can be lessened by decreasing so, the

defect density, or the number of defect classes, k. In effect this introduces a

more error free manufacturing process or reduces thc number of

fabrication steps. However, we have assumed a fixed technology. These

modifications are not permitted. An alternative is to design fault tolerant

chips. By introducing redundancy into the chip design, one or more defects

0.111 b, absorhed, and the chip %vill still bc fuNctional.

1C

.1

t I

218

What can be gained by designing chips with redundant modules? The

maximum number of components per chip (which is determined by the

maximum chip area since we have assumed fixed technology) is determined

by the yield limit of the particular fabrication process. By adding redundant

modules to this chip of maximum size, its yield can be increased resulting in

lower cost (see Figure 7.3. 1). Alternatively, by keeping cost constant, a more

complex device can be fabricated. A device with yield below the yield limit

can, through redundancy, have its yield increased to an acceptable level. In

effect,

use of redundancy allows the technology imposed yield limit to be

surpassed.

The size and complexity of semiconductor devices spans a vast

spectrum from SSI chips containing a few gates to wafer scale devices

occupying vast amounts of silicon real estate (see Figure 7.3.2). Devices

whose complexity and area surpass the yield limit are termed Ultra Large

Area Chips or ULACs for short. They are not characterized by any absolute

size since the position of the yield limit in the spectrum is technology

dependent. The demarcation between conventional chips and ULACs is the

requirement of fault tolerance to meet acceptable chip yield and cost.

(Note that 'ae concept of "acceptable" yield is inherently imprecise.

Low yield (and hence high cost) may be acceptable for a new producL

commanding a premium price. Maturc products facing competitive

pressures may necessitate considcrable higher yield.)

L'. 219

Yield Limit

Cost

Complexity

Figure 7.3.1 - Advantages of Restructurable Design Methodology
1

1!

I-:

220

SS1 LSI ULAC

MS I -
YieldWS
Limit

Figure 7.3.2 - Spectrum of Semiconductor Devices

ULAC

Redundant Reconfigurable

Modular

Figure 7.3.3 - Elements of the Restructurable Design Methodology

221

What are the design requirements in order to utilize redundancy?

Redundancy necessitates a modular design. The system must be divided

into separate and independent modules that can be replicated on the chip.

Furthermore, only a small number of different module types are allowed.

There must be spare copies of each different type of module. With many

different types, the redundancy overhead becomes excessive, and the

complexity of interconnecting the modules increases.

Since the occurrence of defects is a random process, it can not be

known in advance which modules will be good and which will be bad. The

pattern and number of faulty modules will vary from chip to chip. But it is

necessary to connect together only the good modules. This requires a

flexible means of interconnecting the modules. Furthermore, the

interconnections between modules must be customized after the modules

are completely fabricated and tested. In short, the circuitry must be

reconflgurable. Mechanisms for implementing reconfiguration will be

considered in the following section.

Modularity and reconfigurability are the key elements that enable

redundancy to be utilized (see Figure 7.3.3). Through their combination,

chips of larger area and hence greater complexity can be reliably and

economically fabricated. These ultra large area chips offer substantial

increases in integration level above the inherent limitations of fabrication

technology.

I.

222

Chips designed with the restructurable design methodology require

overhead in the form of redundant modules and the wiring necessary to

reconfIgure the components. For this design methodology to be practical,

this overhead must be limited. How can the overhead be kept to a

reasonable level? First, it was noted (see Chapter 2) that higher module

yield results in greater yield gains from redundancy. Thus modules with

small area make more efficient use of silicon area and require lower

overhead due to redundancy.

Second, since the reconfigurable wiring must at a bare minimum be

capable of routing around a module, the wiring area is proportional to the

square of the number of individual connections between modules. To reduce

wiring overhead, it is necessary to limit the number of intermodule

conpections. Furthermore, to reduce the complexity of the wiring, a simple

and regular pattern of connections between the good modules is required.

Note that the requirements of small modules with restricted and

regular information flow are precisely those for designing algorithms for

VLSI systems [Kung79]. The principles for integrated circuit design are the

same as those required for the efficient implementation of restructurable,

fault tolerant chips. There is a strong consonance between the

restructurable design methodology and the general principles *of good

integrated circuit design. In fact, the rcstructurablc design methodology

may be considered to be a specialization and extension of the general design

principles which has the added benefits of increasing the level of integration

or, alternatively, reducing cost.

223

As a result, well designed chips can be relatively easily redesigned to

employ reconfigurability and redundancy. Highly irregular circuitry will not

naturally adapt to the requirement of modularity, and excessively complex

designs may inherently require a large overhead for restructurable wiring.

But simple, modular circuits can easily be extended for the addition of

restructurable wiring between modules.

4. Future Research

This work gives rise to further questions concerning the performance

and implementation of wafer scale CHiP processors. Some of the issues are:

4| the design of a low impedance switch, the implementation of programmable

power down capability, CMOS layout of PEs, etc. Perhaps of more general

interest are the questions of larger scope concerning the extension of tr~is

work to restructurable circuitry and ultra large area chips. Two topics of

particular interest are presented below.

a) Penalties for Restrueturable Circuitry

The use of redundancy to increase the manufacturing yield of circuits is

*" dependent on restructurable circuitry to provide flexible interconnections

"4 between modules. This yield increase is achieved at the expeese of

* more modules per chip

• addition of extra interconnections

* an increase in signal delay

* computational effort in choosing the interconnection pattern for

-restructuring.

r

K
224

The first of these has been examined in some detail. The relationship

between yield, redundancy and area was explored in Chapter 2. Secondly,

additional wiring must be added to a chip to provide restructuring

capability. Given that faults may occur in both the modules and the

structurable wiring, how much wiring area must be provided to insure a high

probability of restructuring? In addition to consuming chip area.

restructurable wiring introduces longer wires between modules with

resulting performance penalties. How much performance loss can be

expected? What average wire lengths will exist between ,modules? In

complex designs with many modules, choosing the best interconnection (or

even finding an interconnection) may be a computationally difficult problem

[Mann77, Aubu73]. Algorithms for restructuring homogeneous VLSI arrays

also require further investigation.

b) Modular PE Design

The results of the analysis of redundancy (see Chapter 2) show that the

highest leverage is obtained from the initial increments of redundancy. The

first extra PE causes a large marginal increase in yield whereas successive

redundant PEs cause smaller yield increases. Clearly, it is most area

efficient to have a small degree of redundancy rather than a large amount.

In the wafer scale CHiP machine, switches and PEs are regarded as

"black boxes" with no internal structure, and faulty building blocks are

eliminated by brute force - column exclusion. All redundancy is within the

building blocks, and the requirement for very high block yield forces a high

d..rec of rcdundancy. Examining Figure 2.5.2 shows that N = 12 PEs is a

vurw' flat porLion of Lhe recovery curve. The addiLion of the 10
thl, 1 .th, and

- -

225

12t11 PEs has increased recovery a total of only 1.7X (see Table 2.5.3).

A more efficient approach may be to have an extended hierarchy with

additional levels and redundancy at more than one level. With a modest

*amount of redundancy introduced at several levels, very high yield for the

topmost member of the hierarchy may be achieved with less area

expenditure.

For example, one approach is to extend the hierarchy upwards.

Building blocks are coalesced into super building blocks (SBBs). There are

sonle redundant PEs and switches within each BB, and each SBB contains

redundant building blocks. This combined redumdancy can result in 99%

yield of the SBBs which can then be composed using column exclusion.

The problem with this approach is that higher up in the hierarchy the

number of connections between units increases. For example, in the wafer

scale CHiP processor, there are ten connections between a pair of switches,

but connecting two building blocks requires 90 wires. Since blocks within

each SBB must be flexibly interconnected, a switching structure to connect

.locks must be provided. With switch area proportional to the square of the

number of connections, a single switch routing 90 wires occupies a large

*i area and consequently has low yield. Instead of a single large switch,

routing can be implemented with a large number of small switches.

However, this substantially increases the number of switching levels between

4a PEs resulting in reduced preformance. In short, there is no practical

method of extending the hierarchy upward.

(

:II

". 326

An alternate solution is to extend the hierarchy downward. Instead of

treating PEs as individual units, impose a modular and reconfigurable

structure on the individual PEs. By dividing them into independent

modules, placing redundant modules within each PE and reconfigurable

wiring between modules, PE yield can be substantially increased. Increasing

PE yield reduces the redundancy required within each block. Increasing PE

yield from the current 65% for the "standard" PE to 80% reduces the number

of PEs per block from 12 to 8 while still maintaining 99% block yield.

Memory redundancy is easily incorporated into each PE using standard

techniques with spare rows (or columns) in the memory array [Smit8i,

Kokk8l, ManoBO]. There are two ways of dividing the datapath of the PE into

modules: slice "horizontally" dividing into bit slices or slicing "vertically"

creating pipelined segments.

The bit slice modularization is easy to design; each module is a

miniature version of the original datapath. Pipelining provides the potential

for increased performance by each PE but is more difficult to design. Since

one module may be substituted for a faulty module, all modules must have

identical hardware. But each stage in an arithmetic pipeline performs a

different operation so the modules must be microcoded to specialize them

for a particular position in the pipeline.

A topic for future research is to design PE modules which are flexible,

powerful and of acceptable size. For a particular processing element,

comparison of the bit slice and pipelined approaches will shed light on the

area - performance - yield tradeoffs of different modularizations.

227

The restructurable wiring within each PE will introduce delays into the

basic cycle Lime of the PE. A programmable switching structure may

introduce an unacceptable performance penalty. An alternative is to use

permanent links Lo reconfigure thec modules [Smit~l. Kokkt~l. Logu3Oj. Thc

less of flexibility is balanced by a decrease in connection impedance. The

feasibility of the modular approach depends in part on the performance loss

due to restructuring and the extent to which it can be balanced by

pipelining.

BIBIOGRAPHY

228

Aubu73 AubussonR. AND CattJ. "Wafer-Scale Integration -A Fault-
Tolerant Procedure," IEEE J. Soli4-Stazte Circuits. SC-iS .3 (June
1973), 339-344.

Aubu78 AubussonR.C. AND GlcdhiII,R.J. "Wafer-Scale Integration - Some
Approaches to the Interconnection Problem," Microelectron~ics V-9,
1 (Jan. 19713). 5-10.

IBatc79 Batcher,K. "MPP - A Massively Parallel Processor," Proc. of 1979
Internationazl Coiif. on ParaZllel Processing, (Aug. 1979), 249.

Blak75 BlakesleeT.R. Digital Design with Standard MSI arnd LSI, Wiley,
New York, 1975.

Budz82 Budzinski,R., Linn,J. AND Thatte.S. "A Restructurable Integrated
Circuit for Implementing Programmable Digital Systems," IEEE
Computer. V-15 .3 (March 1982),.43-54.

Calh72 Calhoun.D.F. AND McNamee,L.P. "A Means of Reducing Custom LSJ
Interconnection Requirements," IEEE J. Solid-State Circuits. SC-7
,5 (Oct. 1972), 395-404.

Cenk79 Cenker,R.P., at. ual., "A Fault-Tolerant 64K Dynamic Random-Access
Memory," IEEE 7'rcns. Electron. Devices ED-26 .6 (June 1979),853-
860.

Chap ChapmanG. private communication, Lincoln Lab.

Cuny82 Cuny,J. AND SnyderL. "Testing Coordination for "Homogeneous"
Parallel Algorithms," Proc. of 1982 International Conf. on Parallel
Processing. (Aug. 1982).

DasG7B DasGupta.S.. Eichelberger,E. AND WilliainsT.W. '1SI Chip Design
for Testability," ISSC 1978, 216-217.

DeSi79 DeSimone,RR, Donofrio,N.M., Flur,13.L.. Kruggel,R.II., Leung.Hi.H..
AND Schnxidt,R? "FETr RAMs," 12979 IEEE ISSCC Digest of Tech.
Papcr:, 22 ,(1.979), 15.1-1 55.

E atoB 1 Eaton,S.S. "A 1O0ns 64lK Dynamic RAM Using Redundancy," ISSUC
Dig, of Tech. Papers (1981),134-65.

...

229

Egaw'9 Egawa,Y., Tsuda,N. AND Masuda,K. "A 1Mb Full Wafer MOS RAM,"
ISSCC Dig. of Tech. Papers (1979), 18-19.

Elme77 Elmer,B.R. et. al. "Fault Tolerant 92160 Bit Multiphase CCD
Memory," ISSCCDig. of Tech. Papers (1977), 116-117.

FitzO Fitzgerald,B.F. AND Thoma,E.P. "Circuit Implementation of Fusible
Addresses on RAMS for Productivity Enhancement," IBM J. of Res.
and Dev. V-24,3 (May 1980), 291-298.

FitzOl Fitzpatrick,D.T., et. al. "VLSI Implementation of a Reduced
Instruction Set Computer," CMU Conf. on VLSI (1981), 327-336.

FussB2 Fussell,D. AND Varman,P. "Fault - Tolerant Wafer - Scale Architec-
tures for VLSI," Proc. 9th Annual Symp. on Computer Architecture
(1982), 190-198.

Gann8l Gannon,D. AND Snyder,L. "Linear Recurrence Systems for VLSI: The
Conflgurable, Highly Parallel Approach," Proc. of the 1981 Interna-
tional Conf. on Parallel Processing, (Aug. 1981), 259-260.

Gare79 Garey, M.R. AND Johnson, D.S. Computers and Intractability A
Guide to the Theory of NP - Completeness, W.H. Freeman, San Fran-
cisco, 1979.

Glas79 Glaser,AB. AND Subak-Sharpe.G.E. Integrated Circuit Engineering
,Addison-Wesley, Reading, 1979.

Gupt72 GuptaA. AND Lathrop,J.W. "Yield Analysis of Large Integrated-
Circuit Chips," IEEE J. Solid-State Circuits. SC-7 ,5 (Oct. 1972),
389-395.

HayeS0 Hayes,J.P. AND McCluskey,E.J. "Testability Considerations in
Microprocessor-Based Design," IEEE Computer V-13 ,3 (March
1980). 17-26.

Hcdlla Hedlund,K.S. "Design of a Prototype Blue CHiP Processing Ele-
ment," rech. Report 381, Comp. Sci. Dept., Purdue Univ., June
1981.

-ledlflb Hedlund,K.S. AN!) Snydcr,L. "A Model for Wafer Scale Testing,"
Tech. Report 389, Comp. Sci. Dept., Purduc Univ., Sept. 1981.

230

Hedl82a Hedlund,K.S. AND SnyderL. "Wafer Scale Integration of
• Configurable, Highly Parallel CHiP Processors," Tech. Report 407

Comp. Sci. Dept., Purdue Univ., April 1982.

HennS1 Hennessy,J., Jouppi,N., Baskett,F. AND Gill,J. "MIPS: A VLSI Proces-
sor Architecture," CMU Conf. on VLSI (1981), 337-346.

Hon30 Hon,L.W. AND SequinC.II. A Guide to LSI Implementation 2nd E7di-
tion, Xerox (Jan. 1980).

HsiaB2 Hsiao,C. "Highly Parallel Processing of Relational Databases," Ph.D.
DisserLation, Comp. Sci. Dept., Purdue U., Aug. 1982.

IEEE82 International Eletrical and Electonics Engineers "Whatever Hap-
pened to Wafer-Scale Integration?" IEEE Spectrum, V-19 , 6(June
1982), 18.

4 Klei8l Kleitman,D. et. al. "New Layouts for the Shuffle-Exchange Graph
(Extended Abstract)," Symp. on Theory of Computing (May 1981),
2783-292.

Kokk8l Kokkonen,K., et. al. "Redundancy Techniques for Fast Static
RAMs," ISSCC Dig. of Tech. Papers (1981), 80-1.

Koni82 Konishi,S. "A 64Kb CMOS RAM," ISSCC Dig. of Tech. Papers (1982),
258-259.

KoreBl Koren, I. "A Reconfigurable and Fault - Tolerant VLSI Multiproces-
sor Array," Proc. 8th Annual Symp. on Computer Architecture
(1981), 425-442.

Kuhn75 Kuhn,L. "Experimental Study of Laser Formed Connections for LSI
Wafer Personalization," IEEE J. of Solid-State Circuits SC-0 ,4
(Aug. 1975), 219-228.

Knut70 Knuth,D.E. "An Empirical Study of FORTrRAN Programs," Software -

Practice and Experience, V-1 , 11, (Nov. 1970), 105-133.

Kung79 Kung,H.T. "Let's Desigli Algorithms for VLSI Systesm" Iroc. of ca o

tech Conf. on Verj Large Scale Integration, (Jan. 1979),65-90.

Kung82 Kung,H.T. "Why SysLolic Arcitectures?" IEEI,. Computer, V-lb ,1
(Jan. 1952), 37-46.

6I

231

LaPa7Ba LaPaugh, A.S. "The Subgraph Homeomorphism Problem," Tech.
Memo 99, Lab. for Comp. Sci., MIT, Feb. 1978.

LaPa78b LaPaugh, A.S. AND Rivest, R.L. "The Subgraph Homeomorphism
Problem," Proc. 10th Annual Symp. on Theory of Computing
(1978), 40-50.

Laws66 Lawson,T.R. "A Prediction of the Photoresist Influence on
Integrated Circuit Yield," Semicond. Prod. Solid State Technol. V-9
,7 (July 1966), 22-25.

Lea79 Lea,R.M. AND Streetharan,M. "WSI Distributed Logic Memories,"
Proc. Caltech Conf on Very Large Scale Integration (Jan. 1979),
187-197.

LoguBQ Logue,J.C. et. al. "Techniques for Improving Engineering Produc-
tivity of VLSI Designs," Proc. of IEEE International Conf. on Cir-
cuits and Computers (1980), 248-251.

Mann77 Manning,F. "An Approach to Highly Integrated, Computer-
Maintained Cellular Arrays," IEEE Trans. Comput. C-28 , 6 (June
1977), 536-552.

Mano8O Mano,T. "A .56K RAM Fabricated With Molybdenum - Ploysilicon
Technology," ISSCC Dig, of Tech. Papers (1980), 234-235.

MeadBO Mead,C. AND Conway,L. Introduction to VLSI Systems , Addison-
Wesley, Reading, 1980.

MinaBi Minato,O., Masuhara,T., Sasaki,T., Sakai,Y. AND Yoshzaki,K. "A
High-Speed Hi-CMOSII 4K Static RAM," IEEE J. Solid-State Circuits
SC-16.5 (Oct 1981), 449-454.

Mina82 Minato, et.al. "A I-II-CMOSII 8K x 8b Static RAM," ISSCC Dig. of
Tech. Papers, (1982), 256-257.

MinaBO Minato,O., Masuhara,T. AND Sakai,Y. "HI-CMOS 4K Static RAM,"
ISSCC Dig. of Tech. Papers (1980),234-5.

Moor79 Moore,G.E,. "Are We Really Ready for VLSI?" Proc. of Caltech Conf.
on Very Large Scale Integration (Jan. 1979), 3-14.

Nai'i7/ Nair,R., Th;.iLLe,S.M. AN!.' :braliani,J.A. "I:ricient Algorihins for
*:Li.n mcmiconidu.cLtor '..dorn - Access Memories," IL"''; Trans.
Coimpul. C-27,6 (June 19713), 572-576.

232

Noyc77 Noyce,R.N. "Large Scale Integration: What is Yet to Come?" Sci-

ence ,(March 15, 1977). 1102-1106,

Owen8l Owens, M.R. "Compound Algorithms for Digit Online Algorithms,"

Tech. Reprot CS-8i-i, Comp. Sci. Dept., Penn. State U., Jan. 1981.

ParzGO ParzcnE. Modern Probability Theory and Its Applications, Wiley,
New York, 1960.

PattGl Pats rson,D.A. AND Scquin,C.H. "RISC I: A Reduced Instruction Set
VLSI Comnputer," Proc, 1th Annual Symp. on Comrputer Architec-
ture (1981), 443-457,

Petr67 Petritz,R.L. "Current Status of Large Scale Integration Technol-
ogy," IEEE . Solid-State Circuits. SC-2 .4 (Dec. 1967), 130-147.

Peut77a Peuto,B,L. AND Shustck,L.J. "Current Issues in the Architecture of
Microprocessors," IEEE Computer, V-10,.2 (Feb. 1977),20-25.

Peut,77b Peuto,13.L. AND Shustek,L.J. "An Instruction Timing Model of CPU
Performance," Proc. 4th Annual Symp. on Computer Architecture,
(1977), 165-178.

Phis79 Phister,M. "Technology and Economics: Integrated Circuit Manufac-
turing C osts, " Computer Design, V-16. 10 (OctL. 1979), 34-4 2.

Pric7O Price, J. E. "A New Look at Yield of Integrated Circuits," Proc.
IE EE. 20 (May 1976), 228-234.

RafT79 Raffcl,J.1. "On the Use of Nonvolatile Programmable Links for Res-
tructurable VLSI," Proc. of Caltech Canf. on Very Large Scale
Integration, (Jan. 1979),95-104.

Rees~i Ree,E.A. et. al. "A 4K x 8 Dynamic RAM With Self Refresh,"
ISSCCIDig. of Tech. IPapers (1981), 8-89.

Ross76 Ross, S. A First Course in Probability, Macmillan, New York, 1976.

RadiG2 RadinG. "The 801 Miicomputer,' Symp. on A1rch. Support for
Proj,. Lcrngs. and Operaiting Sys. (March 1982), 39-47.

1Rung8l Riig,IZA. "Determiingr IC 1,ayout Rtiles for Cost, V1inirnization,"
fEEL' J. 5olid-State Cirt.utits SC-1G, 1 (Feb. 1961),35-43.

233

Sait82 Saito,K. AND Arai,E. "Experimental Analysis and New Modeling of
MOS LSI Yield Associated with the Number of Elements," IEE
Solid-State Circuits SU-i?, 1 (Feb. 1982), 28-33.

Seit79 Seitz, G.L. "Self - Timed VLSI Systems," Proc. Conf. on Very Lazrge
Scale Integration: Architecture, Design and Fabrication (1979).

Smit~l Smith,R.T. et. al. "Laser Programmable Redundancy and Yield
Improvements in a 64K DRAM," IEEE J. of Solid-State Circuits SC-
16, 5 (Oct. 1981), 506-514.

Snyd82a Snyder,L. "Introduction to the Configurable, Highly Parallel Com-
puter, " IEE E Computer V-15,.1 (Jan. 1982), 47-56.

Snyd82b Snyder,L. "Configurable, Highly Parallel (CHiP) Approach for Signal
Processing Applications," Proc. TechL. Symp. East '82, SPIE, 1982.

Stap73 Stapper,C.H. "Defect Density Distribution for LS1 Yield Calcula-
tions," IEEE T'ran. Electron Devices EDJ-WO,7 (July 1973), 655-657.

Stap75 Stapper,C.H. "On a Composite Mocel to the IC Yield Problem," IEEE
J. Solid-State Circuits SC-1O, 6 (Dec. 1975),537-539.

Stap76 Stapper,C.-. "LSI Yield Modeling and Process Monitoring," IBM J.
Res. Dev. V-20, 3 (May 1976), 228-234.

Stap8O Stapper, C.I-., McLaren,A.N., AND Dreckmann,M. "Yield Model for
Productivity Optimization of VLSI Memory Chips with Redundancy
and Partially Good Product," IBM J. Res. and Dev. V-24 ,3 (May
1980),.398-40 9.

Stap82 Stapper,C.H. "Yield Models for 256K RAMs and Beyond," ISSGC Dig.
of Tech. Papers (1982), 12-13.

Ste~i Stcele,TI.S. "Terminal and Cooling Requirements for LSI Packages,"
IEEE Trans, an Comiponents, Hybrids and Manufacturing Tech.
(June 1981),187-191.

Suth77 Sutherl[arid .11 AND Nlcad.C.A. "Microelectronics and Computer
Science," Sc'ientific American V-237, 3 (Sept. 1977), 210-228.

West Weste,N. private communication, U. of North Carolina.

234

Wi1173 Willit.m=,,M.J.Y. AND An(,cll,J.B., "Enhancing Testability of Large-
Scale Integrated Circuits via Test Points anid Additional Logic,"
IEEE 2 -ns. C'omput. C-22 .1 (Jan. 1973), 46-60.

Wii179 Wiiiiams,T.W. AND ParkerK.P. "Testing Logic Networks and Design-
ing for Testability, ' IE EE C'omputer V-12, 10 (Oct. 1979), 9-2 1.

Wu(32 Wu.W. "Automated Welding Customizes Programmable Logic
Arrays," Electronics V-65i, 14 (July 14,1982), 159-162.

{U8l Yu,.L, Chwang,.U., 13ohrM., IVarkcntin,lP_ StrS AND
13rr~ urd. . ., 1-MO',3-C(IJOI' - A Low-Pow or Ibli h-Porforrmrnce Tech-

nology." IEJ!,EJ. S~olid-St ate Circuits SC-16, b (Oct. IUl3i), 'ID4-,ib9.

APPENDIX

235

APPENDIX 1

SUMMATION OF RANDOM VARIABLES

In this appendix we derive the probability

P' = P'(i, nf, Np) = Pr(i defects occupy nf or fewer of Np PEs)

where Np is the total number of PEs in a sublattice which contains nf

redundant PEs and where i > nf. The i defects all fall in a set of Np PEs. P' is

the probability that the defects occupy a subset of size nf or smaller. The

form of P' varies depending on the assumptions which are made about the

processing technology. As the assumptions are made more realistic, the

analytical form of P' can become very cumbersome. P' will first be derived

under a simple set of assumptions, and the results will be progressively

refined.

The Price model assumes distinguishable classes of indistinguishab

defects. For the first approximation, assume only one class so that all

defects are indistinguishable. This corresponds to lumping the effect of all

processing stops and regarding the wafer to be manufactured in a single

stop. We do not diflcrentiate between defects introduced at different stages

of the fabricLiion process. 'his model is called ihe Lumped approximation.

II

236

It is simple to derive and is a useful first approximation.

1. Lumped ApproimatUon

It is tempting to try to evaluate P' by

P E = P Pr(i defects occupy k PEs) (1.1)
k=1

k

However, this is somewhat ambiguous and leads to difficulties. For instance,

consider the number of different possible assignments of 4 defects to 3 PEs.

This includes some assignments in which 2 of the PEs each contain 2 defects

and the third PE is defect free. Only 2 of the 3 PEs contain any defects at

all. This assignment is already counted when placing 4 defects in 2 PEs.

Therefore, equation 1.1 double counts many assignments. To avoid double

counting, we will be more precise iii our terminology. We will say i defects

fall in k PEs if the defects occupy k or fewer PEs; some of the k PE may be

defect-free. i defects cover k PEs if the defects fall in k PEs, and every PE

contains at least one defect.

We can correctly restate equation 1.1

Pt= k Pr(i defects cover k PEs)=
k=1

(number of placcitm:!nts of i defceLs whivmh cover k', INPEs)/ (total nunbcr of placements of i defects (1.2)
k= in Np P1,Es)

Since Lhere are [i+1 -1 diflcreiL ways of placing i indistinguishable defects

in w PEs Ross76J, there are

237

(+Np 1]

different placements of i defects in Np PEs.

For any particular subset of k PEs, how many of these placements cover

the subset? First, take k of the i defects and assign one to each PE of the

subset. This insures that the subset is covered. The remaining i-k defects

can be assigned to any of the k PEs. There are

(i.-k) +k -1)

ways of doing this. This completes the lumped approximation

A more accurate approximation can be derived by modeling more than

one fabrication step [Glas79]. This introduces multiple, distinguishable

classes of indistinguishable defects. Each individual class follows a lumped

approximation, but the fact that i defects can be partitioned into multiple

classes in many different ways must be accounted for.

The first results derived will be for 2 classes of defects. A more realistic

model for Blue CHiP applications is a four class model. The 3 and 4 class

formulae will be derived in a nianner similar to the 2 class derivation.

Figure Al. 1 shows P'(4,i,1O), the probability that is defects all fall in 4 or

fewer of 16 I'I., for the lumped, 2-class and 3-class solutions.

2. Two Claim Approximation.

In refining the lumped approximation, the following assumptions will be

made:

1) There are two distinguishable classes of indistinguishable defects.

Each class represents a separate fabrication step.

2) The fabrication steps are independent.

3) The total number of defects is the sum of the defects introduced at

each step.

4) There is an equal probability of a defect belonging to either class.

Given that there are exactly il, defects of class 1 and i2 of class 2,

consider the probability that the total number of defects, i = il + i2, fall in nf

or fewer of Np PEs. This quantity is denoted by Q". To evaluate Q", we

condition on k, the number of defects covered by defects of both classes.

= P Pr(i defects cover a set of k PEs) (2.1)
k=1

For any particular set of k PEs,

Pr(i defects cover set) = (numb placements of il and i2 that cover set)/
(total numb placements of il and i2 in Np PEs) (2.2)

Consider Lhe denominator of the above equation. Siiicc the fabrication steps

arc independent,

Lotal number of placements of il and i: in Np PEs =

(number of placements of il in Np PEs)'

(number of placements of i2 in Np PEs) =

F? 239

1i+ Np-1) [2+ Np- 1
il i2

This quantity will be denoted by Place (i1 , i2; Np) with the obvious extension

Lo Place (i. 1 iN; Np) following from the independence of all processing

steps.

To evaluate the numerator of equation 2.2 we condition on the number

of different PEs in the set of size k occupied by class 1 defects.

n I[(numb placements of il that cover c, PEs)

(numb placements of i2 that occupy k-cl remaining PEs)

For any subset of size cl, select c, of the class 1 defects and place one

defect in each PE of the subset. This insures that all members of the subset

are occupied. The remaining il - cl defects can be distributed over the c

PEs in

(i1 -C1) + c1 -1]!t i, - C, il- c I

different ways. There are k-c members of the set not covered by defects of

the first class. Therefore, these PEs must be occupied by class 2 defects.

We take k-cl of the 12 class 2 defects and put one in each of the PEs not

covered by class 1. This insures that the enLire set of k PEs is covered. The

remaining i2-(k-cl) defects can be distributed amongst any of the k PEs.

Consequently, there are

i2 - (k-1)) + k-il l2 + l,-i1
* i2~ (k-c,) J 12+ ci-kJ

240

ways of placing thc class 2 defects to insure that all the k PEs contain at

least one defect. Consequently, there are

il-cl [12 + cl-kJ

different ways of placing the il and i2 to cover the subset. We will denote this

quantity by Cover (ij, i2, cl, k).

This completes the evaluation of the numerator of equation 2.2,

numerator, = F,[k, Cover (ij, i2 ; cI, k)
CIJk

To evaluate the limits of the summation.' note that the class 1 defects can

cover at most il of the k PEs. Furthermore, the class 1 defects must cover

at least 1 PE (unless there are no class 2 defects). The class 2 defects must

occupy the remaining k-c PEs not covered by the class 1 defects. So

i2 -- k-c or c 2t k-i 2 . By introducing a one argument form of the Kronecker

delta function

0 i=080(i) = 5(i,0) = i>O

we have

min(ijk) ck

numerator = z, k Cover (ij, i2: cl, k)
C oraa(.o(<x).kOoLr 1

'We asume- 1lfor aCb or a<0or b<0.

241

This completes the evaluation of equation 2.2 and

,.
,Ik Cover(ijjis,;cj,k)

-Q k Place(il,i 2,i3;Np)

*with the limits for c as above.

Now, Q" assumes there are exactly il and i2 defects of each class. We

can use P" to evaluate

Q" = Pr(i defects fall in nf or fewer of Np PEs) =

Q" Pr(i defects are partitioned with il AND i2 in each class) =

-Jf Q" Part(i; il, iz) (2.3)

To evaluate the partition function, Part, let 11 and 12 be random

variables representing the number of defects in each class and i be the total

number of defects. Consider the partitioning of defects into two classes to

be an experiment i trials with each trial deciding which class a defect will be

in. The partitioning of a fixed number of defects into two classes then

follows a binomial distribution [Ross76].

.Pr(l,
= i) = p (1-p) "'

Since it is equally likely that a defect will be in either class (by assumption

four above), we have p=g and

1

242

Pr(11 il) = i(1/ 2)1(1 =1/ 2)'-'l=

Since I and 12 must sum to i,

Pr(I, = il AND 12 = i-il) = Pr(1 = i1) = part(i; il, i-i) =

This completes the evaluation of the two class approximation with equation

2.3 becoming

iP"= Part (i. i 2)2

m-k ki1+ia=i k=1

>2 , Cover (ij, i2 ; c1, k)1N)c--o - (2.4)k J) Place (ij, i2; Np)

3. Extension to Three Classes

The derivation under the assumption of three distinguishable classes of

defects is similar to the 2-class case. P"' will denote the probability under

the 3-class assumption. By a simple extension of the 2-class derivation.

p' = Part (i; il, i 3, ia) "
I +i2+i3= 1 k=i

[Np) Pr(ij, i2 and i3 cover the set) (3.1)

and we can decompose this last probability for a specific set of the PEs.

i'r(i2 , ip and i3 cover Ihe set) = (number of placetnents of il, i2 and i3

243

that cover the set)/ Place (ij, i2, is: Np) (3.2)

where the three argument versions of Part and Place are simple extensions

of the two argument functions:

A) Place. By the independence of the processing steps

Place (il, i2, i,; Np) i j =

'i+Np-i]

4i / Place (i2 , i3: Np)

B) Part. We define

Part (i; il, i2 , is) = probability that i defects are partitioned with il, in class 1,

i2 in class 2 AND is in class 3

= Pr(1l = il AND 2= i2 AND Is = is)

= Pr(I1 = ij) Pr(Is i2 111 = il)

where I, 12 and 13 are random variables representing the number of defectc

in each class. Note that the number of defects in class 3 need not be

explicitly accounted for. Since i = il + i2 + i3, choosing il and i2 determines

iS.

It is equally likely that a defect will be in anyone of the three classes.

Therefore, Pr(I, = i) follows a binomial distribution

Pr(I, = i,) = ("5" (1- = -" (3.3)

Now, the conditional portion of I'r(12 = i2 1 11 ij) constrains the remaining

i-i1 defects Lo fall in either class 2- or class 3. Both are equally probably, so

once again a binomial distribution is followed

244

Pr(12 =i 2 11i il) =i }(1/ 2)'L' (i-I/ 2)'-"-'L'24

ii i (3.4)2'--l 11 Je

Combining equations 3.3 and 3.4 gives

Part (i; i, , i) = 3i £ ' - i2

31 i2 3' i 1! i2! i3!
1 fiij fi-i~

The evaluation of P." is now complete except for the numerator of

equation 3.2 which is evaluated as in the 2-class situation, but with an

additional summation required due to the additional class.

numerator = number of placements of il, i2 , i3 which cover a set of k PEs =

fkl r i1-cD)+c 1-11 (number of placements Of i2 and is which (35
lcd I -i1 -c 1 occupy k-cl remaining PEs) (3.5)

Given a particular subset of size cl, we calculate as follows the number

of placements of i2 and i.9 that insure the set of k PEs is covered. Condition

on c2, the number of previously defect free PEs occupied by class 2 defects.

number of placements of i2 and i3 which occupy k-cl remaining PEs =

i(number of placemrnits of i, whichoccupy c 2 previously defect
1k o2.. free Pls) (number of placements of i3 which occupy (3.6)

Ik-cl-C2 remaininr, 11's)

Select c2 of thc i. class 3 ui'ccLs and place each in a PE' noL already

occupied by a class 1 defect. This insures that, exactly cl and C2 different

PEs are covered by classes I and :.". The remaining i2-c 2 class 2 defects can

245

be assigned to any of the cl and C 2 PEs already covered. There are

f(5C2) + (eI+C2)- i C-1))

different ways of making the class 2 assignments.

Similarly, k-cl-c 2 class 3 defects are required to complete the

covering of the set of k PEs. The remaining i3 -(k-cl-c2) class 3 defects can

be assigned to any of the k PEs in

f3-k+ct+c 2) + k-1l -fi3+c 1+C2- 1 (.6

i3-k+cl+c2 J= -i++c2 (3.8)

different ways.

Substituting equations 3.7 and 3.8 back into equation 3.6, number of

placements of i2 and i- which cover k-cl PEs is

k-c] [i2+cj-l] i3+c+cs-1({c2 is-cs J [is+c,+cs-kJ(~g

To determine the limits of the summation, note that the class 2 defects

must occupy at least 1 PE (unless there arc no class 2 defects).

Furthermore, the class 3 defects must cover the remaining k-cI-c2 PEs not

covered by classcs 1 and 2 so iaj>- k-cl-c2 or C2 >-- k-cl-i 3 , Consequently, C2

assumes values from max (6 0 (i), k-cl-i3) to mn (in2 , k-cl).

To simplify notation, we introduce a threc argument version of the

Cover function

Cover (i1 , i2 , i 3; C2 , k) kii mEi.,k-c)

k-c, --i3)

4

4

C-1 -- 2+ - 3+cl+c--

So, for a specific set of k PEs, equation 3.2 can be rewritten

Pr(i1 , i2 and i3 cover the set) =

1 rnir (i1 ,k) (k
Place (il-i3; Np) c :=tnaf'(60 c1). cij Cover (li-i3; cl, k)

i , k-i 2 -i 3)

where the limits for cl are derived similarly to c2. Finally, we can write P"

as

P= Pr(i defects occupy nf or fewer of Np PEs) =

ii ikiPCovr(ij-i 3 ; c , k)

jl1+-3=i k =I (kPlace (iji3& Np)

247

[4

,..

.9

.8 - Lumpod pp z.
S............ 2-claus Apprz.

3-class Apprz.
.7

.6+
em1

%

44R. . . S .. "<A,"

.3 *

.2.

0..

4. 5. 6. , 7.

4.5 . 5.5 6.5 7.

ql 4 .5 5 .54. 5 .

j = luaber of Defects

1+:;figure al - Probality of j Defects Cluterag
1& 4 of Is PIS

p +4

5+4.

VITA

248

VITA

Ky. Sherrick Hedlund was born in Yonkers, New York on December 2,

1953. He graduated cirn laude with Distinction in Mathematics from Boston

University with a Bachelor of Arts in Mathematics in 1975. Mr. Hedlund has

worked at IBM's Thomas J. Watson Research Center. Argonne National

Laboratory, MIT Artificial Intelligence Laboratory and Call Data, Inc. Purdue

University awarded him a Master of Science in Computer Science in 1979

and a Doctor of Philosophy in 1982. He is currently an Assistant Professor in

the Computer Sciences Department of the University of North Carolina at

Chapel Hill. While at Purdue he was employed as a teaching assistant and a

research assistant. His high score at PACMAN is 196,400.

1

-
%1

